These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 5476260)

  • 1. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. II. Fatty acid composition.
    Veerkamp JH
    Biochim Biophys Acta; 1970 Jul; 210(2):267-75. PubMed ID: 5476260
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. I. Composition of lipids.
    Exterkate FA; Veerkamp JH
    Biochim Biophys Acta; 1969 Jan; 176(1):65-77. PubMed ID: 5766029
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. VIII. Composition and metabolism of phospholipids at different stages and conditions of growth.
    Van Schaik FW; Veerkamp JH
    Biochim Biophys Acta; 1975 May; 388(2):213-25. PubMed ID: 237545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. 3. Morphological structure and osmotic properties of the protoplasts and membrane composition.
    Exterkate FA; Vrensen GF; Veerkamp JH
    Biochim Biophys Acta; 1970; 219(1):141-54. PubMed ID: 5473501
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. VII. Structure of the phosphogalactolipids.
    Veerkamp JH; van Schaik FW
    Biochim Biophys Acta; 1974 Jun; 348(3):370-87. PubMed ID: 4367972
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. IV. Galactolipid composition.
    Exterkate FA; Veerkamp JH
    Biochim Biophys Acta; 1971 May; 231(3):545-9. PubMed ID: 5282823
    [No Abstract]   [Full Text] [Related]  

  • 7. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell-wall inhibition. VI. Biosynthesis of the galactosyldiglycerides.
    Veerkamp JH
    Biochim Biophys Acta; 1974 Apr; 348(1):23-34. PubMed ID: 4838219
    [No Abstract]   [Full Text] [Related]  

  • 8. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. IX. Metabolism and release of cellular lipids in the presence of antibiotics.
    Veerkamp JH
    Biochim Biophys Acta; 1976 Dec; 450(3):277-87. PubMed ID: 64257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic relationships between phospho(galacto)lipids in Bifidobacterium bifidum var. pennsylvanicus.
    van Schaik FW; Veerkamp JH
    FEBS Lett; 1976 Aug; 67(1):13-6. PubMed ID: 955100
    [No Abstract]   [Full Text] [Related]  

  • 10. Fatty acid composition of Bifidobacterium and Lactobacillus strains.
    Veerkamp JH
    J Bacteriol; 1971 Nov; 108(2):861-7. PubMed ID: 5128337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid composition, distribution, and requirements of two nonsterol-requiring mycoplasmas from complex but defatted growth media.
    Henrikson CV; Panos C
    Biochemistry; 1969 Feb; 8(2):646-51. PubMed ID: 5793715
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes in the fatty acid profiles of red blood cell membrane phospholipids in human neonates during the first month of life.
    Pita ML; De Lucchi C; Faus MJ; Gil A
    Clin Physiol Biochem; 1990; 8(2):91-100. PubMed ID: 2361356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-forms, lipid alterations and inhibition of cell wall biosynthesis.
    Panos C
    Ann N Y Acad Sci; 1967 Jul; 143(1):152-7. PubMed ID: 4861136
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of Bacterial Membrane Fatty Acid Profiles for Biofilm Cells.
    Dubois-Brissonnet F
    Methods Mol Biol; 2019; 1918():165-170. PubMed ID: 30580407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    Biochim Biophys Acta; 1968 Jan; 152(1):40-9. PubMed ID: 5689520
    [No Abstract]   [Full Text] [Related]  

  • 16. Lipid composition of Azotobactervinelandii in which the internal membrane network is induced or repressed.
    Marcus L; Kaneshiro T
    Biochim Biophys Acta; 1972 Nov; 288(2):296-303. PubMed ID: 5082993
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane lipid homeostasis in bacteria.
    Zhang YM; Rock CO
    Nat Rev Microbiol; 2008 Mar; 6(3):222-33. PubMed ID: 18264115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. V. Structure of the galactosyldiglycerides.
    Veerkamp JH
    Biochim Biophys Acta; 1972 Jul; 273(2):359-67. PubMed ID: 4342947
    [No Abstract]   [Full Text] [Related]  

  • 19. Positional preference of fatty acids in phospholipids of Bacillus cereus and its relation to growth temperature.
    Kaneda T
    Biochim Biophys Acta; 1972 Oct; 280(2):297-305. PubMed ID: 4629867
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of smoking on fatty acid composition of phospholipid sperm membrane and the malondialdehyde levels in human seminal plasma.
    Štramová X; Čegan A; Hampl R; Kanďár R
    Andrologia; 2015 Nov; 47(9):967-73. PubMed ID: 25311153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.