These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5476770)

  • 41. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep.
    Kajimura N; Uchiyama M; Takayama Y; Uchida S; Uema T; Kato M; Sekimoto M; Watanabe T; Nakajima T; Horikoshi S; Ogawa K; Nishikawa M; Hiroki M; Kudo Y; Matsuda H; Okawa M; Takahashi K
    J Neurosci; 1999 Nov; 19(22):10065-73. PubMed ID: 10559414
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sleep and other behavioural responses induced by acetylcholinic stimulation of frontal and mesial cortex.
    Mazzuchelli-O'Flaherty AL; O'Flaherty JJ; Hernández-Peón R
    Brain Res; 1967 Mar; 4(2):268-83. PubMed ID: 5339900
    [No Abstract]   [Full Text] [Related]  

  • 43. A GABAergic pontine reticular system is involved in the control of wakefulness and sleep.
    Xi MC; Morales FR; Chase MH
    Sleep Res Online; 1999; 2(2):43-8. PubMed ID: 11382881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Markov-dependency and spectral analyses on spike-counts in mesencephalic reticular neurons during sleep and attentive states.
    Yamamoto M; Nakahama H; Shima K; Kodama T; Mushiake H
    Brain Res; 1986 Feb; 366(1-2):279-89. PubMed ID: 3697684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiunit activity in the mesencephalic reticular formation and septal area of freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Brain Res Bull; 1979; 4(6):715-9. PubMed ID: 230885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-correlation analysis of midbrain reticular neuron pairs during sleep-waking cycle of the cat.
    Eguchi K; Satoh T
    Brain Res; 1982 Aug; 245(2):259-66. PubMed ID: 7127073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effect of ether on the midbrain reticular formation and cerebral cortex according to results of EEG and evoked potential studies].
    Golovchinskiĭ VB; Plekhotkina SI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1970; 20(6):1275-82. PubMed ID: 5510124
    [No Abstract]   [Full Text] [Related]  

  • 48. Sleep-wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the 'athalamic' cat.
    Villablanca J; Salinas-Zeballos ME
    Arch Ital Biol; 1972 Oct; 110(3):383-411. PubMed ID: 4349191
    [No Abstract]   [Full Text] [Related]  

  • 49. Multiple unit activity during habituation, sleep-wakefulness cycle and the effect of ACTH and corticosteroid treatment.
    Korányi L; Beyer C; Guzmán-Flores C
    Physiol Behav; 1971 Sep; 7(3):321-9. PubMed ID: 4329573
    [No Abstract]   [Full Text] [Related]  

  • 50. [Provoked vocal emission in cats by stimulation of the mesencephalon reticular formation].
    Louis-Sylvestre J
    C R Seances Soc Biol Fil; 1968; 162(12):2092-8. PubMed ID: 4241512
    [No Abstract]   [Full Text] [Related]  

  • 51. Existence of a mutal tonic inhibitory interaction between the preoptic hypnogenic structure and the midbrain reticular formation.
    Bremer F
    Brain Res; 1975 Oct; 96(1):71-5. PubMed ID: 1175006
    [No Abstract]   [Full Text] [Related]  

  • 52. An attempt to analyze multi-unit recordings.
    Dill JC; Lockemann PC; Naka KI
    Electroencephalogr Clin Neurophysiol; 1970 Jan; 28(1):79-82. PubMed ID: 4188477
    [No Abstract]   [Full Text] [Related]  

  • 53. Oscillatory changes in multiple unit activity during rapid eye movement sleep.
    Drucker-Colín RR; Bernal-Pedraza JG; Díaz-Mitoma FJ; Zamora-Quezada J
    Exp Neurol; 1977 Nov; 57(2):331-41. PubMed ID: 198228
    [No Abstract]   [Full Text] [Related]  

  • 54. Basal forebrain mechanisms for internal inhibition and sleep.
    Clemente CD; Sterman MB
    Res Publ Assoc Res Nerv Ment Dis; 1967; 45():127-47. PubMed ID: 6083189
    [No Abstract]   [Full Text] [Related]  

  • 55. [Alterations in the cerebral threshold for seizure activity during wakefulness and different sleep stages in animals].
    Ioseliani TK; Nanobashvili ZI; Khizanishvili NA
    Neirofiziologiia; 1974; 6(6):577-84. PubMed ID: 4372566
    [No Abstract]   [Full Text] [Related]  

  • 56. Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions.
    Baghdoyan HA; Rodrigo-Angulo ML; McCarley RW; Hobson JA
    Brain Res; 1984 Jul; 306(1-2):39-52. PubMed ID: 6466986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Facilitation of attack behavior by stimulation of the midbrain of cats.
    Sheard MH; Flynn JP
    Brain Res; 1967 Apr; 4(4):324-33. PubMed ID: 6068009
    [No Abstract]   [Full Text] [Related]  

  • 58. Spontaneous discharge rates of cat cerebellar Purkinje cells in sleep and waking.
    Hobson JA; McCarley RW
    Electroencephalogr Clin Neurophysiol; 1972 Nov; 33(5):457-69. PubMed ID: 4116430
    [No Abstract]   [Full Text] [Related]  

  • 59. Tonic and phasic changes in threshold of arousal during desynchronized sleep.
    Gassel MM; Pompeiano O
    Arch Ital Biol; 1967 Nov; 105(4):480-98. PubMed ID: 4296765
    [No Abstract]   [Full Text] [Related]  

  • 60. Effects of electric stimulation of brain stem reticular formation on hippocampal theta rhythm and muscle activity in unanesthetized, cervical- and midbrain-transected rats.
    Klemm WR
    Brain Res; 1972 Jun; 41(2):331-44. PubMed ID: 4504547
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.