These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 5476893)

  • 21. Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture.
    Villano M; Aulenta F; Ciucci C; Ferri T; Giuliano A; Majone M
    Bioresour Technol; 2010 May; 101(9):3085-90. PubMed ID: 20074943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparative studies with the electron microscope of bacteria belonging to the group Acinetobacter].
    Tscherepova N
    Zentralbl Bakteriol Orig A; 1972 Sep; 221(4):458-66. PubMed ID: 4144942
    [No Abstract]   [Full Text] [Related]  

  • 23. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer.
    Takeuchi M; Nanba K; Iwamoto H; Nirei H; Kusuda T; Kazaoka O; Owaki M; Furuya K
    Water Res; 2005 Jun; 39(11):2438-44. PubMed ID: 15955544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrocarbon penetration into the yeast cell.
    Munk V; Volfová O; Kotyk A; Dostálek M
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:F23. PubMed ID: 5311983
    [No Abstract]   [Full Text] [Related]  

  • 25. [Research progresses of methanotrophs and methane monooxygenases].
    Han B; Su T; Li X; Xing X
    Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions.
    Scheutz C; Kjeldsen P; Bogner JE; De Visscher A; Gebert J; Hilger HA; Huber-Humer M; Spokas K
    Waste Manag Res; 2009 Aug; 27(5):409-55. PubMed ID: 19584243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro.
    Asanuma N; Iwamoto M; Hino T
    J Dairy Sci; 1999 Apr; 82(4):780-7. PubMed ID: 10212465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tip-growth of bacterial cellulose microfibrils and its relation to the crystallographic fine structure of cellulose.
    Colvin JR
    J Polym Sci B; 1966 Oct; 4(10):747-54. PubMed ID: 5977600
    [No Abstract]   [Full Text] [Related]  

  • 29. [Methane-generating potential of coal samples with different maturity].
    He Q; Ding C; Li G; Cheng H; Cheng L; Zhang H
    Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1307-17. PubMed ID: 24697103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity, distribution, and abundance of methane-oxidizing bacteria in the near surface soils of onshore oil and gas fields.
    Xu K; Tang Y; Ren C; Zhao K; Wang W; Sun Y
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7909-18. PubMed ID: 23090054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methane-oxidizing bacteria in fresh waters. 3. The capacity of methane utilization by methane-oxidizing enrichment cultures as revealed by gas chromatographic analyses.
    Naguib M
    Z Allg Mikrobiol; 1971; 11(1):39-47. PubMed ID: 5557059
    [No Abstract]   [Full Text] [Related]  

  • 32. Ultrastructural study of the midgut mycetome-bacteroids of the tsetse flies Glossina morsitans, G. Fuscipes, and G, brevipalpis (Diptera, Brachycera).
    Reinhardt C; Steiger R; Hecker H
    Acta Trop; 1972; 29(3):280-8. PubMed ID: 4404253
    [No Abstract]   [Full Text] [Related]  

  • 33. [Assimilation of hydrocarbon components of natural gas by monocultures of bacteria and artificial combinations of them].
    Malashenko IuR; Romanovskaia VA; Bogachenko VN; Voloshin NV; Krishtab TP
    Izv Akad Nauk SSSR Biol; 1975; (1):44-51. PubMed ID: 803995
    [No Abstract]   [Full Text] [Related]  

  • 34. [The biology and osmoadaptation of haloalkaliphilic methanotrophs].
    Trotsenko IuA; Khelenina VN
    Mikrobiologiia; 2002; 71(2):149-59. PubMed ID: 12024811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New sludge pretreatment method to improve methane production in waste activated sludge digestion.
    Zhang D; Chen Y; Zhao Y; Zhu X
    Environ Sci Technol; 2010 Jun; 44(12):4802-8. PubMed ID: 20496937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
    Kessler JD; Valentine DL; Redmond MC; Du M; Chan EW; Mendes SD; Quiroz EW; Villanueva CJ; Shusta SS; Werra LM; Yvon-Lewis SA; Weber TC
    Science; 2011 Jan; 331(6015):312-5. PubMed ID: 21212320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research progress and discovery process of facultative methanotrophs--a review].
    Zhao T; Xing Z; Zhang L
    Wei Sheng Wu Xue Bao; 2013 Aug; 53(8):781-9. PubMed ID: 24341269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinguishing activity decay and cell death from bacterial decay for two types of methanogens.
    Hao X; Cai Z; Fu K; Zhao D
    Water Res; 2012 Mar; 46(4):1251-9. PubMed ID: 22209262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methane emission mitigation by methane-oxidizing bacteria immobilized on building materials.
    Ganendra G; De Muynck W; Ho A; Boon N
    Commun Agric Appl Biol Sci; 2013; 78(1):61-7. PubMed ID: 23875299
    [No Abstract]   [Full Text] [Related]  

  • 40. [Efficiency of utilization of free energy by methane-oxidizing bacteria].
    Smirnova ZS
    Mikrobiologiia; 1971; 40(1):5-7. PubMed ID: 5580120
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.