These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5477344)

  • 1. A formylatable methionine transfer ribonucleic acid from yeast: comparison of coding properties and sequences around the anticodon with Escherichia coli formylatable methionine transfer RNA.
    RajBhandary UL; Kumar A
    J Mol Biol; 1970 Jun; 50(3):707-11. PubMed ID: 5477344
    [No Abstract]   [Full Text] [Related]  

  • 2. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli.
    Stern R; Gonano F; Fleissner E; Littauer UZ
    Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881
    [No Abstract]   [Full Text] [Related]  

  • 3. Initiation of protein synthesis,I. Effect of formylation of methionyl-tRNA on codon recognition.
    Leder P; Bursztyn H
    Proc Natl Acad Sci U S A; 1966 Nov; 56(5):1579-85. PubMed ID: 5339625
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect on in vitro methylation on the chromatographic and coding properties of methyl-deficient leucine transfer RNA.
    Capra JD; Peterkofsky A
    J Mol Biol; 1968 May; 33(3):591-607. PubMed ID: 4882614
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of a ternary complex between formylatable yeast Met-tRNA, GTP and binding factor T of yeast and of E. coli.
    Richter D; Lipmann F
    Nature; 1970 Sep; 227(5264):1212-4. PubMed ID: 4916410
    [No Abstract]   [Full Text] [Related]  

  • 6. Modifications of ribonucleic acid by chemical carcinogens. I. In vitro modification of transfer ribonucleic acid by N-acetoxy-2-acetylaminofluorene.
    Fink LM; Nishimura S; Weinstein IB
    Biochemistry; 1970 Feb; 9(3):496-502. PubMed ID: 4906322
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies on polynucleotides. XCI. Yeast methionine transfer ribonucleic acid: purification, properties, and terminal nucleotide sequences.
    RajBhandary UL; Ghosh HP
    J Biol Chem; 1969 Mar; 244(5):1104-13. PubMed ID: 4886181
    [No Abstract]   [Full Text] [Related]  

  • 8. Binding of formylmethionyl-tRNA and aminoacyl-tRNA to ribosomes.
    Ohta T; Thach RE
    Nature; 1968 Jul; 219(5151):238-43. PubMed ID: 4876465
    [No Abstract]   [Full Text] [Related]  

  • 9. Amino acid coding in Sarcina lutea and Saccharomyces cerevisiae.
    Groves WE; Kempner ES
    Science; 1967 Apr; 156(3773):387-90. PubMed ID: 4886536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation of the genetic message. V. Effect of Mg++ and formylation of methionine in protein synthesis.
    Salas M; Miller MJ; Wahba AJ; Ochoa S
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1865-9. PubMed ID: 5340638
    [No Abstract]   [Full Text] [Related]  

  • 11. The coding nature of valyl-transfer RNA binding to ribosomes during methionine starvation in E. coli 113-3.
    Huang HH; Ma J; Johnson BC
    Biochem Biophys Res Commun; 1971 May; 43(4):847-53. PubMed ID: 4935288
    [No Abstract]   [Full Text] [Related]  

  • 12. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases.
    Roy KL; Söll D
    J Biol Chem; 1970 Mar; 245(6):1394-400. PubMed ID: 4910052
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N-2-dimethylguanine in soluble ribonucleic acid.
    Phillips JH; Kjellin-Stråby K
    J Mol Biol; 1967 Jun; 26(3):509-18. PubMed ID: 6029741
    [No Abstract]   [Full Text] [Related]  

  • 14. Recognition by initiator transfer ribonucleic acid of a uridine 5' adjacent to the AUG codon: different conformational states of formylatable methionine-accepting transfer ribonucleic acid at the ribosomal peptidyl site.
    Eckhardt H; Lührmann R
    Biochemistry; 1981 Apr; 20(8):2075-80. PubMed ID: 7016171
    [No Abstract]   [Full Text] [Related]  

  • 15. Initiator codons in eukaryotes.
    Brown JC; Smith AE
    Nature; 1970 May; 226(5246):610-2. PubMed ID: 4910674
    [No Abstract]   [Full Text] [Related]  

  • 16. Codon-anticodon interaction of methionine specific tRNAs.
    Högenauer G; Turnowsky F; Unger FM
    Biochem Biophys Res Commun; 1972 Mar; 46(6):2100-6. PubMed ID: 4553156
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of nucleotide adjacent to 3'-end of codon triplet on ribosomal binding of aminoacyl-tRNA.
    Furuichi Y; Ukita T
    Biochem Biophys Res Commun; 1970 Nov; 41(3):797-803. PubMed ID: 4920878
    [No Abstract]   [Full Text] [Related]  

  • 18. The structure and coding specificity of a lysine transfer ribonucleic acid from the haploid yeast Saccharomyces cerevisiae alpha S288C.
    Smith CJ; Ley AN; D'Obrenan P; Mitra SK
    J Biol Chem; 1971 Dec; 246(24):7817-9. PubMed ID: 4944319
    [No Abstract]   [Full Text] [Related]  

  • 19. 2'-O-methyloligoadenylates as templates for the binding of lysyl transfer ribonucleic acid to ribosomes.
    Price AR; Rottman F
    Biochemistry; 1970 Nov; 9(23):4524-9. PubMed ID: 4919810
    [No Abstract]   [Full Text] [Related]  

  • 20. Ribosomal precursor RNA in Saccharomyces carlsbergensis.
    Retèl J; Planta RJ
    Eur J Biochem; 1967 Dec; 3(2):248-58. PubMed ID: 6082612
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.