BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 547742)

  • 1. Direct differential-pulse polarographic determinaion of mixtures of food coloring matters, Chocolate Brown HT, tartrazine and Green S.
    Fogg AG; Yoo KS
    Analyst; 1979 Nov; 104(1244):1087-90. PubMed ID: 547742
    [No Abstract]   [Full Text] [Related]  

  • 2. Occurrence of azo food dyes and their effects on cellular inflammatory responses.
    Leo L; Loong C; Ho XL; Raman MFB; Suan MYT; Loke WM
    Nutrition; 2018 Feb; 46():36-40. PubMed ID: 29290353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon.
    Cheng Q; Xia S; Tong J; Wu K
    Anal Chim Acta; 2015 Aug; 887():75-81. PubMed ID: 26320788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Pharmaceutical preparations which contain tartrazine].
    Alvarez Cuesta E; Alcover Sánchez R; Sainz Martín T; Anaya Turrientes M; García Rodríguez D
    Allergol Immunopathol (Madr); 1981; 9(1):45-54. PubMed ID: 7258046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks.
    Yang H; Ran G; Yan J; Zhang H; Hu X
    Luminescence; 2018 Mar; 33(2):349-355. PubMed ID: 29094465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food.
    Gan T; Sun J; Meng W; Song L; Zhang Y
    Food Chem; 2013 Dec; 141(4):3731-7. PubMed ID: 23993542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Detection of a natural organic dye, cochineal, in meat products].
    Andrzejewska E
    Rocz Panstw Zakl Hig; 1981; 32(4):315-8. PubMed ID: 7342305
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of food dyes E 110, E 111, and E 124 in fish samples by ion pair partition HPLC.
    Aitzetmüller K; Arzberger E
    Z Lebensm Unters Forsch; 1979 Nov; 169(5):335-8. PubMed ID: 516918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin layer chromatographic separation and spectrodensitometric determination of higher and lower sulfonated subsidiary dyes in FD&C Yellow No. 6.
    Bell S
    J Assoc Off Anal Chem; 1975 Jul; 58(4):717-8. PubMed ID: 1150611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of dietary exposure of children to artificial food colours in Kuwait.
    Husain A; Sawaya W; Al-Omair A; Al-Zenki S; Al-Amiri H; Ahmed N; Al-Sinan M
    Food Addit Contam; 2006 Mar; 23(3):245-51. PubMed ID: 16517526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of food dyes on cultured fetal rat hepatocytes.
    Sako F; Kobayashi N; Watabe H; Taniguchi N
    Toxicol Appl Pharmacol; 1980 Jun; 54(2):285-92. PubMed ID: 6252664
    [No Abstract]   [Full Text] [Related]  

  • 12. Simultaneous determination of color additives tartrazine and allura red in food products by digital image analysis.
    Vidal M; Garcia-Arrona R; Bordagaray A; Ostra M; Albizu G
    Talanta; 2018 Jul; 184():58-64. PubMed ID: 29674083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid sorption - Spectrometric method for determination of synthetic anionic dyes in foodstuffs.
    Tikhomirova TI; Ramazanova GR; Apyari VV
    Food Chem; 2017 Apr; 221():351-355. PubMed ID: 27979213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure liquid chromatographic determination of 4,4'-(diazoamino)-dibenzenesulfonic acid in FD&C yellow no. 6.
    Marmion DM
    J Assoc Off Anal Chem; 1977 Jan; 60(1):168-72. PubMed ID: 401804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation.
    Barciela P; Perez-Vazquez A; Prieto MA
    Food Chem Toxicol; 2023 Aug; 178():113935. PubMed ID: 37429408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.
    Jampasa S; Siangproh W; Duangmal K; Chailapakul O
    Talanta; 2016 Nov; 160():113-124. PubMed ID: 27591594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of the colorants sunset yellow FCF and quinoline yellow by solid-phase spectrophotometry using partial least squares multivariate calibration.
    Capitán-Vallvey LF; Fernández MD; de Orbe I; Vilchez JL; Avidad R
    Analyst; 1997 Apr; 122(4):351-4. PubMed ID: 9177078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an ultrasensitive immunoassay for detecting tartrazine.
    Li Z; Song S; Xu L; Kuang H; Guo S; Xu C
    Sensors (Basel); 2013 Jun; 13(7):8155-69. PubMed ID: 23799494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine.
    Dorraji PS; Jalali F
    Food Chem; 2017 Jul; 227():73-77. PubMed ID: 28274460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous determination of Sunset yellow and Tartrazine in soft drinks using gold nanoparticles carbon paste electrode.
    Ghoreishi SM; Behpour M; Golestaneh M
    Food Chem; 2012 May; 132(1):637-41. PubMed ID: 26434343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.