These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 5479296)

  • 1. Polynucleotide phosphorylase covalently bound to cellulose and its use in the preparation of homopolynucleotides.
    Hoffman CH; Harris E; Chodroff S; Michelson S; Rothrock JW; Peterson E; Reuter W
    Biochem Biophys Res Commun; 1970 Nov; 41(3):710-4. PubMed ID: 5479296
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis of a copolymer containing adenylic and deoxyadenylic acid residues with polynucleotide phosphorylase.
    Chou JY; Singer MF
    Biochem Biophys Res Commun; 1971 Jan; 42(2):306-11. PubMed ID: 4322816
    [No Abstract]   [Full Text] [Related]  

  • 3. [Mg2+-induced primer dependence on polynucleotide phosphorylase from Micrococcus luteus].
    Linder M; Feix G
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1544. PubMed ID: 4649806
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship of mono- and polynucleotide conformation to catalysis by polynucleotide phosphorylase.
    Kapuler AM; Monny C; Michelson AM
    Biochim Biophys Acta; 1970 Sep; 217(1):18-29. PubMed ID: 4927246
    [No Abstract]   [Full Text] [Related]  

  • 5. [Polymeration of 4-thiouridine 5'-diphosphate and 4-thiothymidine 5'-diphosphate by polynucleotide phosphorylase from Micrococcus lysodeikticus].
    Scheit KH; Gaertner E
    Biochim Biophys Acta; 1969 May; 182(1):1-9. PubMed ID: 5792849
    [No Abstract]   [Full Text] [Related]  

  • 6. Codon-anticodon interaction studied with oligonucleotides containing 3 -deazauridine, 4 -deoxyuridine or 3 -deaza- 4 -deoxyuridine. I. Synthesis by primer-dependent polynucleotide phosphorylase of oligonucleotides containing modofied nucleosides.
    Schetters H; Gassen HG; Matthaei H
    Biochim Biophys Acta; 1972 Jul; 272(4):549-59. PubMed ID: 4340554
    [No Abstract]   [Full Text] [Related]  

  • 7. Properties of poly-xanthylic acid and its reactions with potentially complementary homopolynucleotides.
    Fikus M; Shugar D
    Acta Biochim Pol; 1969; 16(1):55-82. PubMed ID: 4893136
    [No Abstract]   [Full Text] [Related]  

  • 8. The processive degradation of individual polyribonucleotide chains. II. Micrococcus lysodeikticus polynucleotide phosphorylase.
    Klee CB; Singer MF
    J Biol Chem; 1968 Mar; 243(5):923-7. PubMed ID: 5640977
    [No Abstract]   [Full Text] [Related]  

  • 9. Polynucleotide phosphorylase of Micrococcus luteus. Studies on the polymerization reaction catalyzed by primer-dependent and primer-independent enzymes.
    Moses RE; Singer MF
    J Biol Chem; 1970 May; 245(9):2414-22. PubMed ID: 5442281
    [No Abstract]   [Full Text] [Related]  

  • 10. Polynucleotide phosphorylase of Micrococcus lysodeikticus. V. A modified preparative procedure.
    Thanassi NM; Singer MF
    J Biol Chem; 1966 Aug; 241(15):3639-41. PubMed ID: 5921782
    [No Abstract]   [Full Text] [Related]  

  • 11. RNA polymerase from Micrococcus luteus: comparative effect of ribosyl and deoxyribosyl oligomers on the homopolymer. Directed reaction.
    Straat PA; Pongs O; Ts'o PO
    Biochem Biophys Res Commun; 1971 Aug; 44(4):905-11. PubMed ID: 5125233
    [No Abstract]   [Full Text] [Related]  

  • 12. Synthesis of a novel flourescent polyriboadenylic acid analog by polynucleotide phosphorylase.
    Tsou KC; Yip KF
    Biopolymers; 1974 May; 13(5):987-93. PubMed ID: 4605198
    [No Abstract]   [Full Text] [Related]  

  • 13. Deoxyadenosine diphosphate as a substrate and inhibitor of polynucleotide phosphorylase of Micrococcus luteus. II. Inhibition of the initiation of adenosine diphosphate polymerization by deoxyadenosine diphosphate.
    Chou JY; Singer MF
    J Biol Chem; 1971 Dec; 246(24):7497-504. PubMed ID: 5316337
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymatic synthesis of polydeoxynucleotides covalently linked to an oligoribonucleotide primer.
    Feix G
    Biochem Biophys Res Commun; 1972 Mar; 46(6):2141-7. PubMed ID: 5018675
    [No Abstract]   [Full Text] [Related]  

  • 15. [Polynucleotide phosphorylase].
    Matsuo K; Higuchi S; Tsuboi M
    Tanpakushitsu Kakusan Koso; 1972 Oct; ():Suppl:183-8. PubMed ID: 4567711
    [No Abstract]   [Full Text] [Related]  

  • 16. [A METHOD FOR OBTAINING LONG-CHAIN POLYNUCLEOTIDES WITH POLYNUCLEOTIDE PHOSPHORYLASE FROM MICROCOCCUS LYSODEIKTICUS].
    STAHL J; HEUMANN W
    Acta Biol Med Ger; 1965; 14():108-13. PubMed ID: 14277099
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of polyamines on the degradation of ribonucleic acids by polynucleotide phosphorylase of Micrococcus luteus.
    Igarashi K; Kumagai H; Oguchi H; Hirose S
    J Biochem; 1977 Feb; 81(2):389-94. PubMed ID: 14945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polynucleotide analogues. 13. Action of ribonuclease T-1 and of polynucleotide phosphorylase on various analogues.
    Michelson AM; Monny C
    Biochim Biophys Acta; 1968 Sep; 166(2):294-7. PubMed ID: 5680595
    [No Abstract]   [Full Text] [Related]  

  • 19. The synthesis and characterization of poly d(I-C) poly d(I-C).
    Grant RC; Harwood SJ; Wells RD
    J Am Chem Soc; 1968 Jul; 90(16):4474-6. PubMed ID: 5666350
    [No Abstract]   [Full Text] [Related]  

  • 20. RNA synthesis: divalent cation-related specificity in the initiation step.
    Wilson RG; Russo JF; Steck TL
    Biochim Biophys Acta; 1970 Apr; 204(2):412-5. PubMed ID: 5441187
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.