These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 5479375)
21. Utilization of quinate and p-hydroxybenzoate by actinomycetes: key enzymes and taxonomic relevance. Grund E; Kutzner HJ J Basic Microbiol; 1998; 38(4):241-55. PubMed ID: 9791947 [TBL] [Abstract][Full Text] [Related]
22. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. Ornston LN J Biol Chem; 1966 Aug; 241(16):3800-10. PubMed ID: 5916393 [No Abstract] [Full Text] [Related]
23. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. van Kleef MA; Duine JA Arch Microbiol; 1988 May; 150(1):32-6. PubMed ID: 3044290 [TBL] [Abstract][Full Text] [Related]
24. Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa. Valone JA; Case ME; Giles NH Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1555-9. PubMed ID: 5283945 [TBL] [Abstract][Full Text] [Related]
26. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: genetic organization. Chaleff RS J Gen Microbiol; 1974 Apr; 81(2):337-55. PubMed ID: 4275708 [No Abstract] [Full Text] [Related]
27. Existence and functions of two enzymes with beta-ketoadipate: succinyl-CoA transferase activity in Pseudomonas florescens. Hoet PP; Stanier RY Eur J Biochem; 1970 Mar; 13(1):71-6. PubMed ID: 5439081 [No Abstract] [Full Text] [Related]
28. Evolutionary significance of metabolic control systems. The beta-ketoadipate pathway provides a case history in bacteria. Cánovas JL; Ornston LN; Stanier RY Science; 1967 Jun; 156(3783):1695-9. PubMed ID: 5611030 [No Abstract] [Full Text] [Related]
29. A new nicotinamide-adenine dinucleotide-dependent hydroaromatic dehydrogenase of Lactobacillus plantarum and its role in formation of (minus)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate. Whiting GC; Coggins RA Biochem J; 1974 Jul; 141(1):35-42. PubMed ID: 4375976 [TBL] [Abstract][Full Text] [Related]
30. A new resuspension medium for pyocyanine production. Ingledew WM; Campbell JJ Can J Microbiol; 1969 Jun; 15(6):595-8. PubMed ID: 4978988 [No Abstract] [Full Text] [Related]
31. Control of metabolic flux through the quinate pathway in Aspergillus nidulans. Wheeler KA; Lamb HK; Hawkins AR Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):195-205. PubMed ID: 8670107 [TBL] [Abstract][Full Text] [Related]
32. The oxidation of D-quinate and related acids by Acetomonas oxydans. Whiting GC; Coggins RA Biochem J; 1967 Jan; 102(1):283-93. PubMed ID: 6030289 [TBL] [Abstract][Full Text] [Related]
34. Purification and characterization of quinate (shikimate) dehydrogenase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa. Barea JL; Giles NH Biochim Biophys Acta; 1978 May; 524(1):1-14. PubMed ID: 148913 [TBL] [Abstract][Full Text] [Related]
35. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. Ornston LN; Stanier RY J Biol Chem; 1966 Aug; 241(16):3776-86. PubMed ID: 5916391 [No Abstract] [Full Text] [Related]
36. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Peek J; Roman J; Moran GR; Christendat D Mol Microbiol; 2017 Jan; 103(1):39-54. PubMed ID: 27706847 [TBL] [Abstract][Full Text] [Related]
37. The branchpoint of pyocyanine biosynthesis. Longley RP; Halliwell JE; Campbell JJ; Ingledew WM Can J Microbiol; 1972 Sep; 18(9):1357-63. PubMed ID: 4627194 [No Abstract] [Full Text] [Related]
38. Nutritional response to feeding L-phenyllactic, shikimic and D-quinic acids in weanling rats. Seifter E; Rettura G; Reissman D; Kambosos D; Levenson SM J Nutr; 1971 Jun; 101(6):747-54. PubMed ID: 5103847 [No Abstract] [Full Text] [Related]
39. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase. Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112 [TBL] [Abstract][Full Text] [Related]
40. Quantitative investigation of the hippuric acid formation in the rat after administration of some possible aromatic and hydroaromatic precursors. Teuchy H; Quatacker J; Wolf G; Van Sumere CF Arch Int Physiol Biochim; 1971 Aug; 79(3):573-87. PubMed ID: 4107876 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]