These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5485030)

  • 1. Matrix-bound enzymes. I. The use of different acrylic copolymers as matrices.
    Mosbach K
    Acta Chem Scand; 1970; 24(6):2084-92. PubMed ID: 5485030
    [No Abstract]   [Full Text] [Related]  

  • 2. Acrylic copolymers as matrices for the immobilization of enzymes. I. Covalent binding or entrapping of various enzymes to bead-formed acrylic copolymers.
    Johansson AC; Mosbach K
    Biochim Biophys Acta; 1974 Dec; 370(2):339-47. PubMed ID: 4613382
    [No Abstract]   [Full Text] [Related]  

  • 3. Matrix-bound enzymes. II. Studies on a matrix-bound two-enzyme-system.
    Mosbach K; Mattiasson B
    Acta Chem Scand; 1970; 24(6):2093-100. PubMed ID: 4394961
    [No Abstract]   [Full Text] [Related]  

  • 4. Acrylic copolymers as matrices for the immobilization of enzymes. II. The effect of a hydrophobic microenvironment on enzyme reactions studied with alcohol dehydrogenase immobilized to different acrylic copolymers.
    Johansson AC; Mosbach K
    Biochim Biophys Acta; 1974 Dec; 370(2):348-53. PubMed ID: 4374238
    [No Abstract]   [Full Text] [Related]  

  • 5. Human trypsin. Isolation and physical-chemical characterization.
    Travis J; Roberts RC
    Biochemistry; 1969 Jul; 8(7):2884-9. PubMed ID: 5808341
    [No Abstract]   [Full Text] [Related]  

  • 6. [Covalent binding of acylated trypsin with polymeric carriers].
    Plate NA; Valuev LI; Egorov NS; Al-Nuri MA
    Prikl Biokhim Mikrobiol; 1977; 13(5):673-6. PubMed ID: 918021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins.
    Craven GR; Voynow P; Hardy SJ; Kurland CG
    Biochemistry; 1969 Jul; 8(7):2906-15. PubMed ID: 4897207
    [No Abstract]   [Full Text] [Related]  

  • 8. The use of bead polymerization of acrylic monomers for immobilization of enzymes.
    Nilsson H; Mosbach R; Mosbach K
    Biochim Biophys Acta; 1972 Apr; 268(1):253-6. PubMed ID: 5018278
    [No Abstract]   [Full Text] [Related]  

  • 9. Application and properties of butyl acrylate/pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization.
    Bryjak J; Liesiene J; Kolarz BN
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):66-74. PubMed ID: 17768035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Methodology for the preparation of nanoparticulate vectors with an acrylic polymer base].
    Rolland A; Gibassier D; Sado P; Le Verge R
    J Pharm Belg; 1986; 41(2):83-93. PubMed ID: 3735054
    [No Abstract]   [Full Text] [Related]  

  • 11. [Development of a method for proving residual monomers in acrylates].
    Beganović M; Bilanovíc D; Vajzović J
    Stomatol Vjesn; 1980; 9(1-2):7-18. PubMed ID: 6953678
    [No Abstract]   [Full Text] [Related]  

  • 12. [Synthesis of (2-acrylamidoethyl)-3-O- (3,6-dideoxy-alpha-D-xylo-hexopyranosyl)-alpha and beta-rhamnopyranosides for preparation of polyacrylamide copolymers with the specificity of O:8 factor of Salmonella].
    Cherniak AIa; Demidov IV; Karmanova IB; Cherniak NV; Kochetkov NK
    Bioorg Khim; 1989 Jan; 15(1):111-22. PubMed ID: 2472793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A WATER-INSOLUBLE POLYANIONIC DERIVATIVE OF TRYPSIN. II. EFFECT OF THE POLYELECTROLYTE CARRIER ON THE KINETIC BEHAVIOR OF THE BOUND TRYPSIN.
    GOLDSTEIN L; LEVIN Y; KATCHALSKI E
    Biochemistry; 1964 Dec; 3():1913-9. PubMed ID: 14269310
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthetic analogues of polynucleotides. VI. The synthesis of ribonucleoside dialdehyde derivatives of polyacrylic acid hydrazide and their interaction with polynucleotides.
    Boulton MG; Jones AS; Walker RT
    Biochim Biophys Acta; 1971 Aug; 246(2):197-205. PubMed ID: 5132900
    [No Abstract]   [Full Text] [Related]  

  • 15. A review of the properties of some orthodontic base polymers.
    Stafford GD; Bates JF; Huggett R
    J Dent; 1983 Dec; 11(4):294-305. PubMed ID: 6583225
    [No Abstract]   [Full Text] [Related]  

  • 16. L-threonine deaminase of Rhodospirillum rubrum. Purification and characterization.
    Feldberg RS; Datta P
    Eur J Biochem; 1971 Aug; 21(3):438-46. PubMed ID: 5569609
    [No Abstract]   [Full Text] [Related]  

  • 17. A preliminary in vivo assessment of acrylic acid graft-copolymers in the urinary tract.
    Ford TF; Parkinson MC; Fydelor PJ; Ringrose BJ; Wickham JE
    J Urol; 1985 Jan; 133(1):141-3. PubMed ID: 3964873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endgroup analysis of isolated poly(methyl methacrylate) from graft copolymers of wool.
    Arai K; Komine S; Negishi M
    J Polym Sci A1; 1970 Apr; 8(4):917-27. PubMed ID: 5467260
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of drugs with polymers. 3. Phase separation of polyacids by O-benzoylthiamine disulfide hydrochloride and gastrointestinal absorption of O-benzoylthiamine disulfide-polyacid complexes.
    Tanaka N; Hirata G; Utsumi I
    Chem Pharm Bull (Tokyo); 1970 Jun; 18(6):1083-90. PubMed ID: 5449931
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermoreversible copolymer gels for extracellular matrix.
    Vernon B; Kim SW; Bae YH
    J Biomed Mater Res; 2000 Jul; 51(1):69-79. PubMed ID: 10813747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.