These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5487168)

  • 1. Temperature dependence of the neural control of the moth flight system.
    Hanegan JL; Heath JE
    J Exp Biol; 1970 Dec; 53(3):629-39. PubMed ID: 5487168
    [No Abstract]   [Full Text] [Related]  

  • 2. The neuronal control of dragonfly flight. II. Physiology.
    Simmons P
    J Exp Biol; 1977 Dec; 71():141-55. PubMed ID: 599324
    [No Abstract]   [Full Text] [Related]  

  • 3. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic input driving respiratory motoneurons in dragonfly larvae.
    Komatsu A
    Brain Res; 1980 Nov; 201(1):215-9. PubMed ID: 7417834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle activity during flight in some large Lepidoptera.
    Kammer AE
    J Exp Biol; 1967 Oct; 47(2):277-95. PubMed ID: 6065815
    [No Abstract]   [Full Text] [Related]  

  • 6. Physiology of insect ecdysis: neural and hormonal factors involved in wing-spreading behaviour of moths.
    Truman JW; Endo PT
    J Exp Biol; 1974 Aug; 61(1):47-55. PubMed ID: 4415074
    [No Abstract]   [Full Text] [Related]  

  • 7. The organization of inputs to motoneurons of the locust metathoracic leg.
    Burrows M; Horridge GA
    Philos Trans R Soc Lond B Biol Sci; 1974 Sep; 269(896):49-94. PubMed ID: 4154463
    [No Abstract]   [Full Text] [Related]  

  • 8. Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight.
    Heinrich B
    J Exp Biol; 1971 Feb; 54(1):141-52. PubMed ID: 5549758
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermoregulation in endothermic insects.
    Heinrich B
    Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modes of activation of motoneurons controlling ventilatory movements of the locust abdomen.
    Burrows M
    Philos Trans R Soc Lond B Biol Sci; 1974 Sep; 269(896):29-48. PubMed ID: 4154462
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of wingbeat synchronous feedback on the motor output systems in flies.
    Heide G
    Z Naturforsch C Biosci; 1974; 29(11-12):739-44. PubMed ID: 4281201
    [No Abstract]   [Full Text] [Related]  

  • 12. Head receptors controlling wing muscle activity in the dragonfly Aeschna grandis.
    Sveshnikov VG
    Neurosci Behav Physiol; 1973; 6(4):293-300. PubMed ID: 4781781
    [No Abstract]   [Full Text] [Related]  

  • 13. Physiological and morphological characterization of anaxonic non-spiking interneurons in the crayfish motor control system.
    Takahata M; Nagayama T; Hisada M
    Brain Res; 1981 Dec; 226(1-2):309-14. PubMed ID: 7296293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual input to the efferent control system of a fly's "gyroscope".
    Chan WP; Prete F; Dickinson MH
    Science; 1998 Apr; 280(5361):289-92. PubMed ID: 9535659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
    Reichert H; Rowell CH
    J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative mechanisms between leg joints of Carausius morosus I. Nonspiking interneurons that contribute to interjoint coordination.
    Brunn DE
    J Neurophysiol; 1998 Jun; 79(6):2964-76. PubMed ID: 9636100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for the production of the motor output pattern in flying locusts.
    Waldron I
    J Exp Biol; 1967 Oct; 47(2):201-12. PubMed ID: 6065810
    [No Abstract]   [Full Text] [Related]  

  • 18. Insect Evolution: The Origin of Wings.
    Ross A
    Curr Biol; 2017 Feb; 27(3):R113-R115. PubMed ID: 28171756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-spiking interactions and local interneurones in the central pattern generator of the crayfish swimmeret system.
    Heitler WJ; Pearson KG
    Brain Res; 1980 Apr; 187(1):206-11. PubMed ID: 7357468
    [No Abstract]   [Full Text] [Related]  

  • 20. Output connections of a wind sensitive interneurone with motor neurones innervating flight steering muscles in the locust.
    Burrows M; Pflüger HJ
    J Comp Physiol A; 1992 Nov; 171(4):437-46. PubMed ID: 1469664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.