BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 5489430)

  • 1. Age-dependent metabolic differences in peripheral hyphae of Rhizoctonia solani.
    Skowronski BS; Gottlieb D
    J Bacteriol; 1970 Nov; 104(2):640-5. PubMed ID: 5489430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro protein synthesis and aging in Rhizoctania solani.
    Obrig TG; Gottlieb D
    J Bacteriol; 1970 Mar; 101(3):755-62. PubMed ID: 5438046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein synthesis during fungal spore germination. II. Aminoacyl-soluble ribonucleic acid synthetase activities during germination of Botryodiplodia theobromae spores.
    Van Etten JL; Brambl RM
    J Bacteriol; 1968 Oct; 96(4):1042-8. PubMed ID: 5685990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular synthesis in Streptomyces antibioticus: in vitro systems for aminoacylation and translation from young and old cells.
    Jones GH
    J Bacteriol; 1975 Oct; 124(1):364-72. PubMed ID: 51847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal competence and spore germination in Fusarium solani.
    Rado TA; Cochrane VW
    J Bacteriol; 1971 May; 106(2):301-4. PubMed ID: 5573727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cell-free amino acid incorporating system from yeast-phase cells of Histoplasma capsulatum.
    Garvey MC; Tewari RP
    Sabouraudia; 1972 Jul; 10(2):113-21. PubMed ID: 4557875
    [No Abstract]   [Full Text] [Related]  

  • 7. Protein synthesis during fungal spore germination. IV. Transfer ribonucleic acid from germinated and ungerminated spores.
    Van Etten JL; Koski RK; el-Olemy MM
    J Bacteriol; 1969 Dec; 100(3):1182-6. PubMed ID: 5364287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between fluorescein diacetate-stained hyphae and oxygen utilization, glucose utilization, and biomass of submerged fungal batch cultures.
    Ingham ER; Klein DA
    Appl Environ Microbiol; 1982 Aug; 44(2):363-70. PubMed ID: 7125653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial nitroacridine, Nitroakridin 3582: binding to nucleic acids in vitro and effects on selected cell-free model systems of macromolecular biosynthesis.
    Wolfe AD; Cook TM; Hahn FE
    J Bacteriol; 1971 Dec; 108(3):1026-33. PubMed ID: 4945180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of protein synthesis in zoospores of Blastocladiella.
    Schmoyer IR; Lovett JS
    J Bacteriol; 1969 Nov; 100(2):854-64. PubMed ID: 5354951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A decreased aminoacyl-transfer-ribonucleic acid-binding capacity of 40S ribosomal subunits resulting from hypophysectomy of the rat.
    Barden N; Korner A
    Biochem J; 1972 Apr; 127(2):411-7. PubMed ID: 5076670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of puromycin aminonucleoside on protein synthesis in Absidia coerulea.
    Nicholls DM; Cohen JH
    Can J Biochem; 1970 Aug; 48(8):858-62. PubMed ID: 5452724
    [No Abstract]   [Full Text] [Related]  

  • 13. Protein synthesis in a cell-free system from an extreme thermophile. Effects of preincubation in the cold on polyuridylic acid-dependent polyphenylalanine synthesis at high temperature.
    Ohno-Iwashita Y; Oshima T; Imahori K
    J Biochem; 1976 Jun; 79(6):1245-52. PubMed ID: 956153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age dependent changes in fungi: ribosomes and protein synthesis in Rhizoctonia solani mycelium.
    Ricciardi RP; Hollomon DW; Gottlieb D
    Arch Mikrobiol; 1974 Feb; 95(4):325-36. PubMed ID: 4857951
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of thyroxine treatment on the transfer of amino acids from aminoacyl transfer ribonucleic acid into protein by cell-free extracts from tadpole liver.
    Unsworth BR; Cohen PP
    Biochemistry; 1968 Jul; 7(7):2581-8. PubMed ID: 5660075
    [No Abstract]   [Full Text] [Related]  

  • 16. Endogenous messenger ribonucleic acid-directed polypeptide chain elongation in a cell-free system from the yeast Saccharomyces cerevisiae.
    Gallis BM; Young ET
    J Bacteriol; 1975 May; 122(2):719-26. PubMed ID: 1092665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex.
    Skoultchi A; Ono Y; Waterson J; Lengyel P
    Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323
    [No Abstract]   [Full Text] [Related]  

  • 18. Specificity of AAG codon recognition by lysyl transfer ribonucleic acid from yeast.
    Mitra SK; Ley AN; Smith CJ
    J Biol Chem; 1971 Sep; 246(18):5854-6. PubMed ID: 4938043
    [No Abstract]   [Full Text] [Related]  

  • 19. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction.
    Ishitsuka H; Kuriki Y; Kaji A
    J Biol Chem; 1970 Jul; 245(13):3346-51. PubMed ID: 4918149
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the macroconidia of Microsporum canis. Characteristics of in vitro amino acid incorporating system.
    Jayaram BM; Rao GR
    Arch Microbiol; 1979 Jan; 120(1):67-72. PubMed ID: 426600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.