BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 5489437)

  • 21. Characterization of constitutive galactose permease mutants in Salmonella typhimurium.
    Saier MH; Bromberg FG; Roseman S
    J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli.
    Roehl RA; Vinopal RT
    J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 24. Phosphoenolpyruvate:sugar phosphotransferase system in Ancalomicrobium adetum.
    Saier MH; Staley JT
    J Bacteriol; 1977 Aug; 131(2):716-8. PubMed ID: 328495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system.
    Saier MH; Young WS; Roseman S
    J Biol Chem; 1971 Sep; 246(18):5838-40. PubMed ID: 4938041
    [No Abstract]   [Full Text] [Related]  

  • 26. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y.
    Van Demark PJ; Plackett P
    J Bacteriol; 1972 Aug; 111(2):454-8. PubMed ID: 5053467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Phibbs PV; Eagon RG
    Arch Biochem Biophys; 1970 Jun; 138(2):470-82. PubMed ID: 4988450
    [No Abstract]   [Full Text] [Related]  

  • 28. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation.
    Postma PW; Stock JB
    J Bacteriol; 1980 Feb; 141(2):476-84. PubMed ID: 6988384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolism of D-fructose by Arthrobacter pyridinolis.
    Sobel ME; Krulwich TA
    J Bacteriol; 1973 Feb; 113(2):907-13. PubMed ID: 4347929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of a phosphoenolypyruvate-dependent sugar phosphotransferase system in mycoplasms.
    Cirillo VP; Razin S
    J Bacteriol; 1973 Jan; 113(1):212-7. PubMed ID: 4688137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity of glucose entry routes in the Enterobacteriaceae.
    Grimont PA; Bouvet OM
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):109-14. PubMed ID: 2561261
    [No Abstract]   [Full Text] [Related]  

  • 33. Phosphorylation of glycerol in Staphylococcus aureus.
    Richey DP; Lin EC
    J Bacteriol; 1973 May; 114(2):880-1. PubMed ID: 4574704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation.
    Misset O; Blaauw M; Postma PW; Robillard GT
    Biochemistry; 1983 Dec; 22(26):6163-70. PubMed ID: 6362721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system.
    Tanaka S; Lin EC
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):913-9. PubMed ID: 5231354
    [No Abstract]   [Full Text] [Related]  

  • 36. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars.
    Ghosh S; Ghosh D
    Indian J Biochem; 1968 Jun; 5(2):49-52. PubMed ID: 4239922
    [No Abstract]   [Full Text] [Related]  

  • 37. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system: sequence comparisons.
    Saier MH; Yamada M; Erni B; Suda K; Lengeler J; Ebner R; Argos P; Rak B; Schnetz K; Lee CA
    FASEB J; 1988 Mar; 2(3):199-208. PubMed ID: 2832233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The pleiotropic function of the phosphoenolpyruvate-dependent phosphotransferase system in bacteria. Communication II].
    Gershanovich VN
    Mol Gen Mikrobiol Virusol; 2003; (3):3-8. PubMed ID: 12966919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of 1-phosphofructokinase and PEP:fructose phosphotransferase activity in Clostridia.
    von Hugo H; Gottschalk G
    FEBS Lett; 1974 Sep; 46(1):106-8. PubMed ID: 4278943
    [No Abstract]   [Full Text] [Related]  

  • 40. Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria.
    Buchanan BB
    J Bacteriol; 1974 Sep; 119(3):1066-8. PubMed ID: 4212219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.