These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 5491009)

  • 1. A chamber for the instrumental control of licking behavior in the laboratory mouse.
    Sprott RL; Clark FW; Wimer RE
    J Exp Anal Behav; 1970 Nov; 14(3):341-3. PubMed ID: 5491009
    [No Abstract]   [Full Text] [Related]  

  • 2. Modification of licking pattern by instrumental conditioning [proceedings].
    Welzl H; Bures J
    Act Nerv Super (Praha); 1977 Mar; 19(1):25-6. PubMed ID: 899630
    [No Abstract]   [Full Text] [Related]  

  • 3. [Accelerated method of elaborating instrumental drinking conditioned reflexes].
    Semagin VN; Tolkachev VN; Zukhar' AV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(6):1312-3. PubMed ID: 7467855
    [No Abstract]   [Full Text] [Related]  

  • 4. [Relation between forward and feedback connections and level of motivation in drinking instrumental reflexes in the rat].
    Semagin VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(2):368-70. PubMed ID: 6858396
    [No Abstract]   [Full Text] [Related]  

  • 5. Compulsive-like effects of repeated administration of quinpirole on drinking behavior in rats.
    Amato D; Milella MS; Badiani A; Nencini P
    Behav Brain Res; 2006 Sep; 172(1):1-13. PubMed ID: 16677719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 23. Morphine as a reinforcing agent: laboratory studies of its capacity to change behavior.
    Nichols JR
    Res Publ Assoc Res Nerv Ment Dis; 1968; 46():299-310. PubMed ID: 5723799
    [No Abstract]   [Full Text] [Related]  

  • 7. Compulsive-like effects of quinpirole on drinking behavior in rats are inhibited by substituting ethanol for water.
    Amato D; Milella MS; Badiani A; Nencini P
    Behav Brain Res; 2007 Feb; 177(2):340-6. PubMed ID: 17157931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of operant conditioning in the study of sodium appetite in goats.
    Baldwin BA
    J Physiol; 1969 Jan; 200(1):20P-1P. PubMed ID: 5761946
    [No Abstract]   [Full Text] [Related]  

  • 9. A device permitting simultaneous recording of EEG activity and operant behavior in cats using an easily learned response.
    Siegel J; Langley TD
    Electroencephalogr Clin Neurophysiol; 1968 Apr; 24(4):381-2. PubMed ID: 4174011
    [No Abstract]   [Full Text] [Related]  

  • 10. Ethanol consumption and place-preference conditioning in the alcohol-preferring C57BL/6 mouse: relationship with motor activity patterns.
    Nocjar C; Middaugh LD; Tavernetti M
    Alcohol Clin Exp Res; 1999 Apr; 23(4):683-92. PubMed ID: 10235304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Item organization in three-dimensional space and their discriminability in a mouse operant behavioral task.
    Cho YH; Delcasso S; Jeantet Y
    Behav Brain Res; 2006 Feb; 167(1):23-9. PubMed ID: 16330105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumental learning in hyperdopaminergic mice.
    Yin HH; Zhuang X; Balleine BW
    Neurobiol Learn Mem; 2006 May; 85(3):283-8. PubMed ID: 16423542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC).
    Lobarinas E; Sun W; Cushing R; Salvi R
    Hear Res; 2004 Apr; 190(1-2):109-14. PubMed ID: 15051133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of licking response execution in the rat.
    Vrtunski P; Wolin LR
    Physiol Behav; 1974 May; 12(5):881-6. PubMed ID: 4837425
    [No Abstract]   [Full Text] [Related]  

  • 15. A device for dispensing hay to ruminants in operant conditioning experiments.
    Baldwin BA; Yates JO
    Physiol Behav; 1972 Jul; 9(1):125-6. PubMed ID: 5080150
    [No Abstract]   [Full Text] [Related]  

  • 16. [Conditioning in female Lebistes reticulatus P. (Poeciliidae cyprinodontiform fish)].
    Amouriq L
    Bull Biol Fr Belg; 1972; 106(2):159-69. PubMed ID: 5082583
    [No Abstract]   [Full Text] [Related]  

  • 17. H-reflex operant conditioning in mice.
    Carp JS; Tennissen AM; Chen XY; Wolpaw JR
    J Neurophysiol; 2006 Oct; 96(4):1718-27. PubMed ID: 16837659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens.
    Robbins TW; Roberts DC; Koob GF
    J Pharmacol Exp Ther; 1983 Mar; 224(3):662-73. PubMed ID: 6402587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of drinking behavior by means of an operant-conditioning technique.
    TEITELBAUM P; WILLIAMS DR
    Science; 1956 Dec; 124(3235):1294-6. PubMed ID: 13390959
    [No Abstract]   [Full Text] [Related]  

  • 20. Disruptive effects of lateral hypothalamic stimulation on the lick-interrupt cycle in rats.
    Greenshaw AJ; Kundu SN; Bures J
    Physiol Bohemoslov; 1984; 33(3):242-50. PubMed ID: 6473543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.