These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 5492785)

  • 1. [Comparative studies, on isolated layers of retinas of warm-blooded animals, of the intraretinal behavior of slow stimulus potentials and the electroretinogram. II. Influence of the stimulation parameter on the light-adapted retina].
    Hanitzsch R
    Vision Res; 1970 Oct; 10(10):1011-23. PubMed ID: 5492785
    [No Abstract]   [Full Text] [Related]  

  • 2. [Comparative studies, on isolated layers of retinas of warm-blooded animals, of the intraretinal behavior of slow stimulus potentials and the electroretinogram. I. Influence of the stimulation parameter on the dark-adapted retina].
    Hanitzsch R
    Vision Res; 1970 Oct; 10(10):993-1009. PubMed ID: 5492798
    [No Abstract]   [Full Text] [Related]  

  • 3. [The electronic-flash ERG of isolated retinas of warm-blooded animals. I. Initial positive waves of the flash ERG].
    von Lützow A
    Vision Res; 1970 Oct; 10(10):1025-33. PubMed ID: 5492786
    [No Abstract]   [Full Text] [Related]  

  • 4. Fast intraretinal potentials of the isolated mammalian retina.
    Hanitzsch R
    Vision Res; 1972 May; 12(5):781-91. PubMed ID: 5037701
    [No Abstract]   [Full Text] [Related]  

  • 5. [AC character of the light and dark adapted retina].
    Tamura O; Nagayama A; Mimawa T
    Nippon Ganka Gakkai Zasshi; 1968 Aug; 72(8):1518-22. PubMed ID: 5751060
    [No Abstract]   [Full Text] [Related]  

  • 6. Photopic-scotopic variations of the electroretinogram during dark adaptation.
    Brunette JR
    Can J Ophthalmol; 1969 Jul; 4(3):283-9. PubMed ID: 5807794
    [No Abstract]   [Full Text] [Related]  

  • 7. [The electronic-flash ERG of isolated retinas of warm-blooded animals. II. Influence of intensity and temperature on the positive waves].
    von Lützow A
    Vision Res; 1970 Oct; 10(10):1035-43. PubMed ID: 5492787
    [No Abstract]   [Full Text] [Related]  

  • 8. [Bleaching of visual purple and rod function in the isolated frog retina. 3. Dark adaptation of the scotopic system following partial bleaching of visual purple].
    Baumann C
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 298(1):70-81. PubMed ID: 5246582
    [No Abstract]   [Full Text] [Related]  

  • 9. The human electroretinogram in the light and during dark adaptation.
    Auerbach E
    Doc Ophthalmol; 1967; 22():1-71. PubMed ID: 6083021
    [No Abstract]   [Full Text] [Related]  

  • 10. [Influence of temperature on the behavior of b-wave in the electroretinogram of dark adapted frogs exposed to serial flash stimulation].
    Berger H; Werner H
    Acta Biol Med Ger; 1970; 25(5):837-45. PubMed ID: 5523716
    [No Abstract]   [Full Text] [Related]  

  • 11. [Restoration cycle of the electroretinogram in conditions of light adaptation and following dark adaptation].
    Grigor'eva LP; Markevich VA
    Fiziol Zh SSSR Im I M Sechenova; 1973 Feb; 59(2):251-7. PubMed ID: 4764384
    [No Abstract]   [Full Text] [Related]  

  • 12. The spectral sensitivity of the human electroretinogram during the temporal course of dark-adaptation.
    Granda AM; Biersdorf WR
    Vision Res; 1966 Oct; 6(9):507-16. PubMed ID: 6003377
    [No Abstract]   [Full Text] [Related]  

  • 13. Light and dark adaptation in the isolated rat retina.
    Weinstein GW; Hobson RR; Dowling JE
    Nature; 1967 Jul; 215(5097):134-8. PubMed ID: 6049101
    [No Abstract]   [Full Text] [Related]  

  • 14. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. II. Effect of adaptation to background light and subsequent recovery in the dark. A Fourier analysis.
    Algvere P; Wachtmeister L
    Acta Ophthalmol (Copenh); 1972; 50(6):837-62. PubMed ID: 4678873
    [No Abstract]   [Full Text] [Related]  

  • 15. Stimulus duration and the oxcillatory potentials of the human electroretinogram.
    Wachtmeister L
    Acta Ophthalmol (Copenh); 1974; 52(5):729-39. PubMed ID: 4479601
    [No Abstract]   [Full Text] [Related]  

  • 16. Adaptation in the isolated rat retina.
    Weinstein GW; Hobson RR
    Nature; 1970 Aug; 227(5261):957-9. PubMed ID: 5449003
    [No Abstract]   [Full Text] [Related]  

  • 17. Differentiation of P 3 subcomponents in cold-blooded vertebrate retinas.
    Murakami M; Kaneko A
    Vision Res; 1966 Dec; 6(12):627-36. PubMed ID: 6003386
    [No Abstract]   [Full Text] [Related]  

  • 18. [Characteristics of dark-adapted and light-adapted oscillatory potentials in human electroretinogram].
    Yin JP; Lei B; Peng H; Wang J; Fu XN
    Nan Fang Yi Ke Da Xue Xue Bao; 2011 Dec; 31(12):2057-60. PubMed ID: 22200712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroretinogram (ERG) and visual evoked response (VER) in rabbits reared in total darkness or continuous illumination.
    Bonaventure N; Goswamy S; Karli P
    Doc Ophthalmol; 1971 Sep; 30():339-47. PubMed ID: 5111778
    [No Abstract]   [Full Text] [Related]  

  • 20. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis.
    Algvere P; Wachtmeister L; Westbeck S
    Acta Ophthalmol (Copenh); 1972; 50(5):735-59. PubMed ID: 4678547
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.