These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 5492995)
1. Solute transfer between intramolecular polar and non-polar phases as a possible rate-limiting step in chymotrypsin deacylation. Coe EL; Coe MH J Theor Biol; 1970 Dec; 29(3):411-25. PubMed ID: 5492995 [No Abstract] [Full Text] [Related]
2. Rate enhancement specificity with alpha-chymotrypsin: temperature dependence of deacylation. Baggott JE; Klapper MH Biochemistry; 1976 Apr; 15(7):1473-81. PubMed ID: 4088 [TBL] [Abstract][Full Text] [Related]
7. Two-step interaction of alpha-chymotrypsin with a fluorescent inhibitor. A dynamic study by the temperature-jump method. Rodier FJ; Ilgenfritz G Eur J Biochem; 1982 Nov; 128(2-3):451-4. PubMed ID: 7151788 [TBL] [Abstract][Full Text] [Related]
8. The effect of temperature on the individual stages of the hydrolysis of non-specific-p-nitrophenol esters by alpha-chymotrypsin. Adams PA; Swart ER Biochem J; 1977 Jan; 161(1):83-92. PubMed ID: 851426 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of bound enzymes. I. Antienergistic interaction of chemical and diffusional inhibition. Engasser JM; Horvath C Biochemistry; 1974 Sep; 13(19):3845-9. PubMed ID: 4413888 [No Abstract] [Full Text] [Related]
10. A kinetic investigation of the crystallographically deduced binding subsites of bovine chymotrypsin A . Segal DM Biochemistry; 1972 Feb; 11(3):349-56. PubMed ID: 5062058 [No Abstract] [Full Text] [Related]
12. Quantitative structure-activity relationship of chymotrypsin-ligand interactions. Hansch C; Grieco C; Silipo C; Vittoria A J Med Chem; 1977 Nov; 20(11):1420-35. PubMed ID: 915902 [TBL] [Abstract][Full Text] [Related]
13. A comparison of dogfish and bovine chymotrypsins. Racicot WF; Hultin HO Arch Biochem Biophys; 1987 Jul; 256(1):131-43. PubMed ID: 3606118 [TBL] [Abstract][Full Text] [Related]
14. Conformational mechanisms for free energy transduction in protein systems: old ideas and new facts. Lumry R Ann N Y Acad Sci; 1974 Feb; 227():46-73. PubMed ID: 4597311 [No Abstract] [Full Text] [Related]
15. alpha-Chymotrypsin deacylation: temperature dependence of hydrolysis and transesterification reactions. Wang CL; Calvo KC; Klapper MH Biochemistry; 1981 Mar; 20(5):1401-8. PubMed ID: 7225338 [TBL] [Abstract][Full Text] [Related]
16. Membrane permeability. Generalization of the reflection coefficient method of describing volume and solute flows. Zelman A Biophys J; 1972 Apr; 12(4):414-9. PubMed ID: 5019478 [TBL] [Abstract][Full Text] [Related]
17. Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study. Mao Q; Walde P; Luisi PL Eur J Biochem; 1992 Aug; 208(1):165-70. PubMed ID: 1511684 [TBL] [Abstract][Full Text] [Related]
18. The role of entropy and enthalpy factors in kinetic specificity of -chymotrypsin. Temperature dependence study of acyl- -chymotrypsins deacylation. Martinek K; Dorovska VN; Varfolomeyev SD; Berezin IV Biochim Biophys Acta; 1972 Jun; 271(1):80-6. PubMed ID: 5038701 [No Abstract] [Full Text] [Related]
19. Kinetics of the interaction of chymotrypsin with eglin c. Faller B; Bieth JG Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):27-32. PubMed ID: 1741752 [TBL] [Abstract][Full Text] [Related]
20. Ion transport through pores: a rate-theory analysis. Läuger P Biochim Biophys Acta; 1973 Jul; 311(3):423-41. PubMed ID: 4729828 [No Abstract] [Full Text] [Related] [Next] [New Search]