These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5492995)

  • 21. The topographical differences in the active site region of alpha-chymotrypsin, subtilisin Novo, and subtilisin Carlsberg. Mapping the aromatic binding site by inhibitors (virtual substrates).
    Bosshard HR; Berger A
    Biochemistry; 1974 Jan; 13(2):266-77. PubMed ID: 4810052
    [No Abstract]   [Full Text] [Related]  

  • 22. Mechanism of chymotrypsin. Structure, reactivity, and nonproductive binding relationships.
    Fastrez J; Fersht AR
    Biochemistry; 1973 Mar; 12(6):1067-74. PubMed ID: 4688860
    [No Abstract]   [Full Text] [Related]  

  • 23. Specificity of -chymotrypsin. Separation of polar, steric, and specific effects in the -chymotrypsin-catalyzed hydrolysis of acyl-substituted p-nitrophenyl esters.
    Dupaix A; Béchet JJ; Roucous C
    Biochemistry; 1973 Jul; 12(14):2559-66. PubMed ID: 4711463
    [No Abstract]   [Full Text] [Related]  

  • 24. Water permeability of lipid membranes.
    Fettiplace R; Haydon DA
    Physiol Rev; 1980 Apr; 60(2):510-50. PubMed ID: 6992166
    [No Abstract]   [Full Text] [Related]  

  • 25. A general kinetic approach to investigation of active-site availability in macromolecular catalysts.
    Resmini M; Gul S; Carter S; Sonkaria S; Topham CM; Gallacher G; Brocklehurst K
    Biochem J; 2000 Feb; 346 Pt 1(Pt 1):117-25. PubMed ID: 10657247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics of alpha-chymotrypsin-inhibitor complex formation. Effects of structural modification of the inhibitor.
    Hymes AJ; Cuppett CC; Canady WJ
    J Biol Chem; 1969 Feb; 244(4):637-43. PubMed ID: 5768861
    [No Abstract]   [Full Text] [Related]  

  • 27. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acylation of chymotrypsin by active esters of nonspecific substrates. Evidence for a transient acylimidazole intermediate.
    Hubbard CD; Kirsch JF
    Biochemistry; 1972 Jun; 11(13):2483-93. PubMed ID: 5040654
    [No Abstract]   [Full Text] [Related]  

  • 29. Kinetics and thermodynamics of the slow hydrophobic deactivation of alpha-chymotrypsin.
    Smith RN; Poindexter TP; Hansch C
    Physiol Chem Phys; 1975; 7(5):423-36. PubMed ID: 1197384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of osmotic flow in porous membranes.
    Anderson JL; Malone DM
    Biophys J; 1974 Dec; 14(12):957-82. PubMed ID: 4429773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Enzyme intermediates with the C-terminal products of substrate hydrolysis by carboxypeptidase A and chymotrypsin. Use of the free energy linearity principle].
    Kozlov LV
    Biokhimiia; 1980 Aug; 45(8):1442-7. PubMed ID: 7236796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of chymotrypsin-ι-carrageenan complex in aqueous solution: a solubility and thermodynamical stability study.
    Valetti NW; Boeris V; Picó G
    Int J Biol Macromol; 2013 Jan; 52():45-51. PubMed ID: 23107807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permeable membrane/mass spectrometric measurement of solvent 1H/2H, 12C/13C, and 16O/18O kinetic isotope effects associated with alpha-chymotrypsin deacylation: evidence for reaction mechanism plasticity.
    Mishra AK; Klapper MH
    Biochemistry; 1986 Nov; 25(23):7328-36. PubMed ID: 3542025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'1.
    Bauer CA
    Biochim Biophys Acta; 1976 Jul; 438(2):495-502. PubMed ID: 821530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimerization of alpha-chymotrypsin. II. Ionic strength and temperature dependence.
    Aune KC; Goldsmith LC; Timasheff SN
    Biochemistry; 1971 Apr; 10(9):1617-22. PubMed ID: 4325604
    [No Abstract]   [Full Text] [Related]  

  • 36. Effect of the gel to liquid crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes.
    Blok MC; van Deenen LL; De Gier J
    Biochim Biophys Acta; 1976 Apr; 433(1):1-12. PubMed ID: 1260054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of side chain structure of ester substrates in determining the rate-controlling step in alpha-chymotrypsin-catalyzed hydrolysis.
    Ohno M; Karasaki Y
    J Biochem; 1979 Nov; 86(5):1269-74. PubMed ID: 574866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient-phase kinetics of alpha-chymotrypsin and other enzyme systems.
    Maguire RJ
    Biochim Biophys Acta; 1974 Mar; 341(1):1-14. PubMed ID: 4828844
    [No Abstract]   [Full Text] [Related]  

  • 39. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases.
    Clerc SG; Thompson TE
    Biophys J; 1995 Jun; 68(6):2333-41. PubMed ID: 7647237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The rate-limiting step in the adenine phosphoribosyltransferase reaction.
    Gadd RE; Henderson JF
    Biochem Biophys Res Commun; 1970 Feb; 38(3):363-8. PubMed ID: 4315346
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.