These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 5493509)

  • 1. Creatine regulation in the embryo and growing chick.
    Ramírez O; Calva E; Trejo A
    Biochem J; 1970 Oct; 119(4):757-63. PubMed ID: 5493509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine biosynthesis during embryonic development. False feedback suppression of liver amidinotransferase by N-acetimidoylsarcosine and 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Walker JB; Hannan JK
    Biochemistry; 1976 Jun; 15(12):2519-22. PubMed ID: 938623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher homolog and N-ethyl analog of creatine as synthetic phosphagen precursors in brain, heart, and muscle, repressors of liver amidinotransferase, and substrates for creatine catabolic enzymes.
    Roberts JJ; Walker JB
    J Biol Chem; 1985 Nov; 260(25):13502-8. PubMed ID: 4055745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. END-PRODUCT REPRESSION IN THE CREATINE PATHWAY OF THE DEVELOPING CHICK EMBRYO.
    WALKER JB
    Adv Enzyme Regul; 1963; 1():151-68. PubMed ID: 14190351
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes of creatine concentration during development of chick embryo.
    Witkowska A; Stankiewicz M; Poczopko P
    Acta Physiol Pol; 1985; 36(3):208-15. PubMed ID: 3837598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estrogen modulates the expression of L-arginine:glycine amidinotransferase in chick liver.
    Zhu Y; Evans MI
    Mol Cell Biochem; 2001 May; 221(1-2):139-45. PubMed ID: 11506177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin A economy of the developing chick embryo and of the freshly hatched chick.
    Joshi PS; Mathur SN; Murthy SK; Ganguly J
    Biochem J; 1973 Nov; 136(3):757-61. PubMed ID: 4798578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative studies on enzyme repression in the developing chick embryo and newly hatched chick.
    WALKER JB
    Proc Soc Exp Biol Med; 1963 Jan; 112():245-7. PubMed ID: 13998496
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of in ovo feeding of creatine pyruvate on the hatchability, growth performance and energy status in embryos and broiler chickens.
    Zhao MM; Gao T; Zhang L; Li JL; Lv PA; Yu LL; Gao F; Zhou GH
    Animal; 2017 Oct; 11(10):1689-1697. PubMed ID: 28219475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers.
    Zhao MM; Gong DQ; Gao T; Zhang L; Li JL; Lv PA; Yu LL; Gao F; Zhou GH
    J Anim Physiol Anim Nutr (Berl); 2018 Apr; 102(2):e758-e767. PubMed ID: 28986936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disposition of 14C-nicotine in the fertilized chick egg.
    Di Carlo FJ; Gilani SH
    Am J Anat; 1977 Apr; 148(4):527-33. PubMed ID: 868775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical study of muscle samples from chicken embryos affected by Wofatox 50 EC.
    Déli E; Somlyay I; Várnagy L
    Arch Toxicol Suppl; 1985; 8():277-9. PubMed ID: 3868356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of maternal dietary manganese and incubation temperature on hatchability, antioxidant status, and expression of heat shock proteins in chick embryos.
    Zhu YW; Lu L; Li WX; Zhang LY; Ji C; Lin X; Liu HC; Odle J; Luo XG
    J Anim Sci; 2015 Dec; 93(12):5725-34. PubMed ID: 26641182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine: biosynthesis, regulation, and function.
    Walker JB
    Adv Enzymol Relat Areas Mol Biol; 1979; 50():177-242. PubMed ID: 386719
    [No Abstract]   [Full Text] [Related]  

  • 15. Arginine and creatine interrelationships in the chick.
    Austic RE; Nesheim MC
    Poult Sci; 1972 Jul; 51(4):1098-105. PubMed ID: 4647572
    [No Abstract]   [Full Text] [Related]  

  • 16. [Role of calcium in the regulation of syncytial formation and the formation of creatine kinase during the development of muscle in the absence of creatine].
    Ramírez O; Hernández O; Mercado E
    Arch Inst Cardiol Mex; 1975; 45(4):416-22. PubMed ID: 1180605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appearance of creatine during the early chick embryo development.
    Ramirez O; Calva E; Gonzalez M
    Comp Biochem Physiol B; 1973 Jul; 45(313):721-5. PubMed ID: 4712883
    [No Abstract]   [Full Text] [Related]  

  • 18. [Creatine and phosphocreatine concentrations and creatine phosphokinase activity in the hearts of dogs with restricted coronary blood flow].
    Voronkov GS
    Vopr Med Khim; 1980; 26(2):203-6. PubMed ID: 7456350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.
    Bera S; Wallimann T; Ray S; Ray M
    FEBS J; 2008 Dec; 275(23):5899-909. PubMed ID: 19021765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney.
    Horn M; Frantz S; Remkes H; Laser A; Urban B; Mettenleiter A; Schnackerz K; Neubauer S
    J Mol Cell Cardiol; 1998 Feb; 30(2):277-84. PubMed ID: 9515004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.