These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 5493668)
21. Scanning electron microscopy of thiobacilli grown on colloïdal sulfur. Baldensperger J; Guarraia LJ; Humphreys WJ Arch Microbiol; 1974; 99(4):323-9. PubMed ID: 4611376 [No Abstract] [Full Text] [Related]
22. Kinetic studies on elemental sulfur oxidation by Acidithiobacillus ferrooxidans: sulfur limitation and activity of free and adsorbed bacteria. Ceskova P; Mandl M; Helanova S; Kasparovska J Biotechnol Bioeng; 2002 Apr; 78(1):24-30. PubMed ID: 11857277 [TBL] [Abstract][Full Text] [Related]
23. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Silver M; Torma AE Can J Microbiol; 1974 Feb; 20(2):141-7. PubMed ID: 4822784 [No Abstract] [Full Text] [Related]
24. Oxidation of gallium sulfides by Thiobacillus ferrooxidans. Torma AE Can J Microbiol; 1978 Jul; 24(7):888-91. PubMed ID: 28175 [TBL] [Abstract][Full Text] [Related]
25. [Role of sulfur bacteria in the oxidation of sulfide ores of some beds of East Kazakhstan]. Gol'braĭkht AI Mikrobiologiia; 1970; 39(1):139-45. PubMed ID: 4247521 [No Abstract] [Full Text] [Related]
26. [Identification and distribution of sulfur in Thiobacillus ferrooxidans cells]. Gromova LA; Karavaĭko GI; Sevtsov AV; Pereverzev NA Mikrobiologiia; 1983; 52(3):455-60. PubMed ID: 6621423 [TBL] [Abstract][Full Text] [Related]
27. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans. Mesa MM; Macías M; Cantero D Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298 [TBL] [Abstract][Full Text] [Related]
28. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01. Potumarthi R; Mugeraya G; Jetty A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):532-46. PubMed ID: 18574569 [TBL] [Abstract][Full Text] [Related]
29. [Nature of the sulfur-containing component and its function in Thiobacillus ferrooxidans]. Karavaĭko GI; Gromova LA; Pereverzev NA Mikrobiologiia; 1983; 52(4):559-62. PubMed ID: 6645991 [TBL] [Abstract][Full Text] [Related]
30. [Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41]. Egorova MA; Tsaplina IA; Zakharchuk LM; Bogdanova TI; Krasil'nikova EN Prikl Biokhim Mikrobiol; 2004; 40(4):448-54. PubMed ID: 15455718 [TBL] [Abstract][Full Text] [Related]
31. [Rate of iron (Fe 2+) bacterial oxidation at different temperatures and concentrations of Thiobacillus ferrooxidans cells]. Mikhailova TL; Pestovskikh NV Prikl Biokhim Mikrobiol; 1980; 16(4):621-3. PubMed ID: 7220514 [TBL] [Abstract][Full Text] [Related]
32. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Aminuddin M; Nicholas DJ Biochim Biophys Acta; 1973 Oct; 325(1):81-93. PubMed ID: 4770733 [No Abstract] [Full Text] [Related]
33. Sulfide oxidation by spheroplasts of Thiobacillus ferrooxidans. Tano T; Lundgren D Appl Environ Microbiol; 1978 Jun; 35(6):1198-205. PubMed ID: 28080 [TBL] [Abstract][Full Text] [Related]
34. Sulfite oxidation by iron-grown cells of Thiobacillus ferrooxidans at pH 3 possibly involves free radicals, iron, and cytochrome oxidase. Harahuc L; Suzuki I Can J Microbiol; 2001 May; 47(5):424-30. PubMed ID: 11400733 [TBL] [Abstract][Full Text] [Related]
35. Effects of medium agitation and wetting agents on oxidation of sulphur by Thiobacillus thiooxidans. FREDERICK LR; JONES GE; STARKEY RL J Gen Microbiol; 1956 Oct; 15(2):329-34. PubMed ID: 13376875 [No Abstract] [Full Text] [Related]
36. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. Haaijer SC; Van der Welle ME; Schmid MC; Lamers LP; Jetten MS; Op den Camp HJ FEMS Microbiol Ecol; 2006 Dec; 58(3):439-48. PubMed ID: 17117988 [TBL] [Abstract][Full Text] [Related]
37. Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques. Gonzalez-Sanchez A; Tomas M; Dorado AD; Gamisans X; Guisasola A; Lafuente J; Gabriel D Water Sci Technol; 2009; 59(7):1323-9. PubMed ID: 19380997 [TBL] [Abstract][Full Text] [Related]
38. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Torma AE Rev Can Biol; 1971 Sep; 30(3):209-16. PubMed ID: 4948817 [No Abstract] [Full Text] [Related]
39. [Kinetics of Fe ++ oxidation in continuous cultures of Thiobacillus ferrooxidans (brief report)]. Oberzill W Zentralbl Bakteriol Orig A; 1972 May; 220(1):395. PubMed ID: 4145607 [No Abstract] [Full Text] [Related]
40. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Rohwerder T; Gehrke T; Kinzler K; Sand W Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]