These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 5495454)

  • 1. Quantitative relation between hydrostatic pressure gradient, extracellular volume and active sodium transport in the epithelium of the frog skin (R. temporaria).
    Voute CL; Ussing HH
    Exp Cell Res; 1970 Oct; 62(2):375-83. PubMed ID: 5495454
    [No Abstract]   [Full Text] [Related]  

  • 2. [Active sodium transport and control of volume and hydrostatic pressure in the epithelial extracellular space].
    Voûte CL; Ussing HH
    Bratisl Lek Listy; 1971 Nov; 56(5):579-88. PubMed ID: 5159581
    [No Abstract]   [Full Text] [Related]  

  • 3. Correlation between the mechanism of insulin and vasopressin actions on sodium transport across isolated frog skin.
    Feder E; Skorupski W
    Acta Physiol Pol; 1979; 30(2):253-60. PubMed ID: 313658
    [No Abstract]   [Full Text] [Related]  

  • 4. Nature and localization of the sodium pool during active transport in the isolated frog skin.
    Zerahn K
    Acta Physiol Scand; 1969 Nov; 77(3):272-81. PubMed ID: 5372259
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of small hydrostatic pressure gradients on the rate of active sodium transport across isolated living frog-skin membranes.
    Nutbourne DM
    J Physiol; 1968 Mar; 195(1):1-18. PubMed ID: 5639801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double (series) pump model for transporting epithelia.
    Cuthbert AW
    J Theor Biol; 1972 Sep; 36(3):555-68. PubMed ID: 5080449
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of vasopressin on components of Na transport in frog skin.
    Rider J; Thomas S
    J Physiol; 1969 Jul; 203(1):72P-73P. PubMed ID: 5821920
    [No Abstract]   [Full Text] [Related]  

  • 8. Intracellular redistribution of sodium and calcium during stimulation of sodium transport in epithelial cells.
    Zadunaisky JA; Gennaro JF; Bashirelahi N; Hilton M
    J Gen Physiol; 1968 May; 51(5):Suppl:290S+. PubMed ID: 5659038
    [No Abstract]   [Full Text] [Related]  

  • 9. [The effect of antidiuretic hormone and catecholamines on transepithelial sodium transport].
    Kuz'min OB
    Probl Endokrinol (Mosk); 1975; 21(2):58-62. PubMed ID: 124056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 11. [Effect of water flow in relation to osmotic gradient on water and sodium transport through the bladder wall and skin of frogs].
    Natochin IuV; Shakhmatova EI; Lavrova EA
    Biofizika; 1970; 15(6):1029-35. PubMed ID: 5482656
    [No Abstract]   [Full Text] [Related]  

  • 12. The morphological aspects of shunt-path in the epithelium of the frog skin (R. temporaria).
    Voûte CL; Ussing HH
    Exp Cell Res; 1970 Jul; 61(1):133-40. PubMed ID: 4914505
    [No Abstract]   [Full Text] [Related]  

  • 13. Evidence for electrogenic Na transport from the cytoplasmatic tissue pool of frog skin epithelium [proceedings].
    Nagel W
    J Physiol; 1978 Nov; 284():146P-147P. PubMed ID: 310456
    [No Abstract]   [Full Text] [Related]  

  • 14. An upper limit to the number of sodium channels in frog skin epithelium.
    Cuthbert AW
    J Physiol; 1973 Feb; 228(3):681-92. PubMed ID: 4540802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the polyene antibiotic filipin and the calcium ionophore A23187 on sodium transport in isolated frog skin (Rana temporaria).
    Nielsen R
    J Membr Biol; 1978; 40 Spec No():331-45. PubMed ID: 366154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diphenylhydantoin on active sodium transport in frog skin.
    Watson EL; Woodbury DM
    J Pharmacol Exp Ther; 1972 Mar; 180(3):767-76. PubMed ID: 4536839
    [No Abstract]   [Full Text] [Related]  

  • 17. Some morphological aspects of active sodium transport. The epithelium of the frog skin.
    Voûte CL; Ussing HH
    J Cell Biol; 1968 Mar; 36(3):625-38. PubMed ID: 5645551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hormonal response of sodium-transporting amphibian skin epithelium.
    Khatcheressian I; Prenen S; Crabbé J
    Arch Int Physiol Biochim; 1976 Apr; 84(2):336-9. PubMed ID: 71039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of 60Co-EDTA as an extracellular marker in frog skin.
    Ferreira KT; Swensson WM
    Biochim Biophys Acta; 1979 Mar; 552(1):178-82. PubMed ID: 107970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of antidiuretic hormone on Na movement across frog skin.
    Cereijido M; Rotunno CA
    J Physiol; 1971 Feb; 213(1):119-33. PubMed ID: 5575333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.