These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 5495482)

  • 1. Molecular scale drug entrapment as a precise method of controlled drug release. 3. In vitro and in vivo studies of drug release.
    Rhodes CT; Wai K; Banker GS
    J Pharm Sci; 1970 Nov; 59(11):1581-4. PubMed ID: 5495482
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular scale drug entrapment as a precise method of controlled drug release. II. Facilitated drug entrapment to polymeric colloidal dispersions.
    Rhodes CT; Wai K; Banker GS
    J Pharm Sci; 1970 Nov; 59(11):1578-81. PubMed ID: 5495481
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular-scale drug entrapment as a precise method of controlled drug release. I. Entrapment of cationic drugs by polymeric flocculation.
    Goodman H; Banker GS
    J Pharm Sci; 1970 Aug; 59(8):1131-7. PubMed ID: 4394015
    [No Abstract]   [Full Text] [Related]  

  • 4. Molecular-scale drug entrapment as a precise method of controlled drug release. IV. Entrapment of anionic drugs by polymeric gelation.
    Boylan JC; Banker GS
    J Pharm Sci; 1973 Jul; 62(7):1177-84. PubMed ID: 4714128
    [No Abstract]   [Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of a sustained release preparation containing phenylpropanolamine hydrochloride.
    Yamakawa I; Shimomura M; Hattori T; Watanabe S; Tsutsumi J; Shinoda A; Miyake Y
    J Pharmacobiodyn; 1986 Dec; 9(12):947-52. PubMed ID: 3572716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation of phenylpropanolamine to achieve sustained release.
    Prapaitrakul W; Whitworth CW
    J Microencapsul; 1989; 6(2):213-8. PubMed ID: 2723965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of a water-soluble drug from a wax matrix timed-release tablet.
    Goodhart FW; McCoy RH; Ninger FC
    J Pharm Sci; 1974 Nov; 63(11):1748-51. PubMed ID: 4427236
    [No Abstract]   [Full Text] [Related]  

  • 8. Sustained-release dosage form of phenylpropanolamine hydrochloride. Part I: Microencapsulation and in vitro release kinetics.
    Sevgi F; Ozyazici M; Güneri T
    J Microencapsul; 1994; 11(3):327-34. PubMed ID: 8064556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained-release dosage form of phenylpropanolamine hydrochloride. Part II: Formulation and in vitro release kinetics from tableted microcapsules.
    Sevgi F; Ozyazici M; Güneri T
    J Microencapsul; 1994; 11(3):335-44. PubMed ID: 8064557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained-release drug delivery system I: Coated ion-exchange resin system for phenylpropanolamine and other drugs.
    Raghunathan Y; Amsel L; Hinsvark O; Bryant W
    J Pharm Sci; 1981 Apr; 70(4):379-84. PubMed ID: 7229946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules IV.(1)) Evaluation of the controlled release properties for in vivo and in vitro release systems.
    Fukui A; Fujii R; Yonezawa Y; Sunada H
    Chem Pharm Bull (Tokyo); 2007 Nov; 55(11):1569-73. PubMed ID: 17978513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of antacid on the pharmacokinetics of extended-release formulations of tolterodine and oxybutynin.
    Sathyan G; Dmochowski RR; Appell RA; Guo C; Gupta SK
    Clin Pharmacokinet; 2004; 43(14):1059-68. PubMed ID: 15530134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules III. Effects of the dissolution condition on the release process.
    Fukui A; Fujii R; Yonezawa Y; Sunada H
    Chem Pharm Bull (Tokyo); 2006 Aug; 54(8):1091-6. PubMed ID: 16880650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrapment of proteins and peptides in chitosan-polyphosphoric acid hydrogel beads: A new approach to achieve both high entrapment efficiency and controlled in vitro release.
    Yuan D; Jacquier JC; O'Riordan ED
    Food Chem; 2018 Jan; 239():1200-1209. PubMed ID: 28873541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained release phenylpropanolamine hydrochloride from ATO 888 matrix.
    Perez MA; Ghaly ES; Marti A
    P R Health Sci J; 1993 Dec; 12(4):263-7. PubMed ID: 8140204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled drug release through polymeric films.
    Fites AL; Banker GS; Smolen VF
    J Pharm Sci; 1970 May; 59(5):610-3. PubMed ID: 5446414
    [No Abstract]   [Full Text] [Related]  

  • 17. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, Optimization and in-vitro characterization.
    Anwar H; Ahmad M; Minhas MU; Rehmani S
    Carbohydr Polym; 2017 Jun; 166():183-194. PubMed ID: 28385222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state kinetics of sustained-release phenylpropanolamine.
    Lönnerholm G; Grahnén A; Lindström B
    Int J Clin Pharmacol Ther Toxicol; 1984 Jan; 22(1):39-41. PubMed ID: 6698658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas.
    Judy KD; Olivi A; Buahin KG; Domb A; Epstein JI; Colvin OM; Brem H
    J Neurosurg; 1995 Mar; 82(3):481-6. PubMed ID: 7861228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro release of hydrophobic drugs from polyanhydride disks.
    Jampel HD; Koya P; Leong K; Quigley HA
    Ophthalmic Surg; 1991 Nov; 22(11):676-80. PubMed ID: 1686489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.