These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 549630)
41. Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. Chasis JA; Mohandas N; Shohet SB J Clin Invest; 1985 Jun; 75(6):1919-26. PubMed ID: 4008645 [TBL] [Abstract][Full Text] [Related]
42. Hereditary spherocytosis of man. Defective cytoskeletal interactions in the erythrocyte membrane. Sawyer WH; Hill JS; Howlett GJ; Wiley JS Biochem J; 1983 May; 211(2):349-56. PubMed ID: 6870835 [TBL] [Abstract][Full Text] [Related]
43. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. Lux SE; John KM; Ukena TE J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286 [TBL] [Abstract][Full Text] [Related]
44. Electron spin resonance and biochemical studies of the interaction of the polyamine, spermine, with the skeletal network of proteins in human erythrocyte membranes. Wyse JW; Butterfield DA Biochim Biophys Acta; 1988 Jun; 941(2):141-9. PubMed ID: 2838078 [TBL] [Abstract][Full Text] [Related]
45. [Molecular interactions of membrane proteins and erythrocyte deformability]. Boivin P Pathol Biol (Paris); 1984 Jun; 32(6):717-35. PubMed ID: 6235477 [TBL] [Abstract][Full Text] [Related]
46. Insulin degradation in human erythrocyte. Effects of reduced glutathione on insulin degradation by membrane fractions. Bellomo G; Nicotera PL; Fratino P Boll Soc Ital Biol Sper; 1981 Aug; 57(16):1666-72. PubMed ID: 7030366 [TBL] [Abstract][Full Text] [Related]
47. [Extraction and purification of the chief glycoprotein of the erythrocyte membrane]. Le Bec A; Mayer S Rev Fr Transfus Immunohematol; 1979 Sep; 22(4):329-41. PubMed ID: 556211 [TBL] [Abstract][Full Text] [Related]
48. The reconstitution of the human erythrocyte sugar transporter in planar bilayer membranes. Nickson JK; Jones MN Biochim Biophys Acta; 1982 Aug; 690(1):31-40. PubMed ID: 6751392 [TBL] [Abstract][Full Text] [Related]
49. The dissociation of peripheral proteins from erythrocyte membranes brought about by p-mercuribenzenesulfonate. Clark SJ; Ralston GB Biochim Biophys Acta; 1990 Jan; 1021(2):141-7. PubMed ID: 2302393 [TBL] [Abstract][Full Text] [Related]
50. Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique. Chang CH; Takeuchi H; Ito T; Machida K; Ohnishi S J Biochem; 1981 Oct; 90(4):997-1004. PubMed ID: 6458603 [TBL] [Abstract][Full Text] [Related]
51. Flow cytometric analysis of the association between blood group-related proteins and the detergent-insoluble material of K562 cells and erythroid precursors. Gane P; Le Van Kim C; Bony V; El Nemer W; Mouro I; Nicolas V; Colin Y; Cartron JP Br J Haematol; 2001 Jun; 113(3):680-8. PubMed ID: 11380458 [TBL] [Abstract][Full Text] [Related]
52. The lateral distribution of intramembrane particles in the erythrocyte membrane and recombinant vesicles. Gerritsen WJ; Verkleij AJ; Van Deenen LL Biochim Biophys Acta; 1979 Jul; 555(1):26-41. PubMed ID: 476098 [TBL] [Abstract][Full Text] [Related]
53. Specific binding of solubilized adenylate cyclase to the erythrocyte cytoskeleton. Sahyoun NE; Le Vine H; Hebdon GM; Hemadah R; Cuatrecasas P Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2359-62. PubMed ID: 6941294 [TBL] [Abstract][Full Text] [Related]
54. Interaction of Sendai virus proteins with the cytoplasmic surface of erythrocyte membranes following viral envelope fusion. Caldwell SE; Lyles DS J Biol Chem; 1981 May; 256(10):4838-42. PubMed ID: 6262306 [TBL] [Abstract][Full Text] [Related]
55. Organization of membrane lipids and proteins in human En(a-) erythrocytes that lack the major sialoglycoprotein, glycophorin A. A spin-label study. Jansson SE; Gripenberg J; Hekali R; Gahmberg CG Biochem J; 1981 Apr; 195(1):123-8. PubMed ID: 6272742 [TBL] [Abstract][Full Text] [Related]
56. Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. Atkinson CT; Aikawa M; Perry G; Fujino T; Bennett V; Davidson EA; Howard RJ Eur J Cell Biol; 1988 Feb; 45(2):192-9. PubMed ID: 2966734 [TBL] [Abstract][Full Text] [Related]
57. The cytoskeletal system of nucleated erythrocytes. II. presence of a high molecular weight calmodulin-binding protein. Bartelt DC; Carlin RK; Scheele GA; Cohen WD J Cell Biol; 1982 Oct; 95(1):278-84. PubMed ID: 6890556 [TBL] [Abstract][Full Text] [Related]
58. Quantitative immunoelectrophoresis of proteins in human erythrocyte membranes. Analysis of protein bands obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bjerrum OJ; Bhakdi S; Bog-Hansen TC; Knüfermann H; Wallach DF Biochim Biophys Acta; 1975 Nov; 406(4):489-504. PubMed ID: 52375 [TBL] [Abstract][Full Text] [Related]
59. [Modulation of the interaction between band 3 and the cytoskeleton by binding wheat germ agglutinin to erythrocyte membranes]. Bonnet D; Begard E; Douzou P C R Seances Acad Sci III; 1982 Oct; 295(5):351-4. PubMed ID: 6817871 [No Abstract] [Full Text] [Related]
60. Topography of the external surface of the human red blood cell membrane studied with a nonpenetrating label, [125I]diazodiiodosulfanilic acid. Sears DA; Friedman JM; George JN J Biol Chem; 1977 Jan; 252(2):712-20. PubMed ID: 833150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]