These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 549666)

  • 21. Identification of glucitol (sorbitol) and ribitol in a rust fungus, Puccinia graminis f. sp. tritici.
    Maclean DJ; Scott KJ
    J Gen Microbiol; 1976 Nov; 97(1):83-9. PubMed ID: 993788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fungal diseases on winter wheat in transdanubian region.
    Kadlicskó S; Fischl G; Hoffmann S; Pintér C
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):673-9. PubMed ID: 15151302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An EST library from Puccinia graminis f. sp. tritici reveals genes potentially involved in fungal differentiation.
    Broeker K; Bernard F; Moerschbacher BM
    FEMS Microbiol Lett; 2006 Mar; 256(2):273-81. PubMed ID: 16499617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diversity of Puccinia striiformis on cereals and grasses.
    Hovmøller MS; Sørensen CK; Walter S; Justesen AF
    Annu Rev Phytopathol; 2011; 49():197-217. PubMed ID: 21599494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response.
    Menden B; Kohlhoff M; Moerschbacher BM
    Phytochemistry; 2007 Feb; 68(4):513-20. PubMed ID: 17188312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping of a major stripe rust resistance gene in Chinese native wheat variety Chike using microsatellite markers.
    Liu F; Niu Y; Deng H; Tan G
    J Genet Genomics; 2007 Dec; 34(12):1123-30. PubMed ID: 18155625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel homeobox-like gene associated with reaction to stripe rust and powdery mildew in common wheat.
    Liu D; Xia X-; He Z-; Xu S-
    Phytopathology; 2008 Dec; 98(12):1291-6. PubMed ID: 19000003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scanning electron microscopy of differentiating and non-differentiating uredosporelings of wheat stem rust fungus (Puccinia graminis f. sp. tritici) on an artifical substrate.
    Paliwal YC; Kim WK
    Tissue Cell; 1974; 6(3):391-7. PubMed ID: 4432232
    [No Abstract]   [Full Text] [Related]  

  • 29. Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China.
    Lihua C; Shichang X; Ruiming L; Taiguo L; Wanquan C
    Lett Appl Microbiol; 2008 May; 46(5):501-6. PubMed ID: 18363658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host.
    Jin Y; Szabo LJ; Carson M
    Phytopathology; 2010 May; 100(5):432-5. PubMed ID: 20373963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Concentration of biological substances and oxidase activity during development of the agents of powdery smut of wheat and millet].
    Fedoseeva ZN; Zubko IIa; Andreev VB; Shamraĭ SN
    Mikrobiol Zh; 1976; 38(5):583-6. PubMed ID: 1012079
    [No Abstract]   [Full Text] [Related]  

  • 32. New Insights into the Life Cycle of the Wheat Powdery Mildew: Direct Observation of Ascosporic Infection in Blumeria graminis f. sp. tritici.
    Jankovics T; Komáromi J; Fábián A; Jäger K; Vida G; Kiss L
    Phytopathology; 2015 Jun; 105(6):797-804. PubMed ID: 25710203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Taxonomic study of stripe rust, Puccinia striiformis sensu lato, based on molecular and morphological evidence.
    Liu M; Hambleton S
    Fungal Biol; 2010 Oct; 114(10):881-99. PubMed ID: 20943198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3-D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat.
    Sørensen CK; Justesen AF; Hovmøller MS
    Mycologia; 2012; 104(6):1381-9. PubMed ID: 22802391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the wheat and Puccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction.
    Rampitsch C; Bykova NV; McCallum B; Beimcik E; Ens W
    Proteomics; 2006 Mar; 6(6):1897-907. PubMed ID: 16479535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spore traps network: a new tool for predicting epidemics of wheat yellow rust.
    Dedeurwaerder G; Duvivier M; Mvuyenkure SM; Renard ME; Van Hese V; Marchal G; Moreau JM; Legrève A
    Commun Agric Appl Biol Sci; 2011; 76(4):667-70. PubMed ID: 22702186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro differentiation of haustorial mother cells of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, triggered by the synergistic action of chemical and physical signals.
    Wiethölter N; Horn S; Reisige K; Beike U; Moerschbacher BM
    Fungal Genet Biol; 2003 Apr; 38(3):320-6. PubMed ID: 12684021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat.
    Seah S; Spielmeyer W; Jahier J; Sivasithamparam K; Lagudah ES
    Mol Plant Microbe Interact; 2000 Mar; 13(3):334-41. PubMed ID: 10707359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clonality and host selection in the wheat pathogenic fungus Puccinia triticina.
    Goyeau H; Halkett F; Zapater MF; Carlier J; Lannou C
    Fungal Genet Biol; 2007 Jun; 44(6):474-83. PubMed ID: 17412619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple quantification of in planta fungal biomass.
    Ayliffe M; Periyannan SK; Feechan A; Dry I; Schumann U; Lagudah E; Pryor A
    Methods Mol Biol; 2014; 1127():159-72. PubMed ID: 24643560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.