These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Regulation of adenosine monophosphate levels as a function of adenosine triphosphate and inorganic phosphate. A proposed metabolic role for adenosine monophosphate nucleosidase from Azotobacter vinelandii. Schramm VL; Leung H J Biol Chem; 1973 Dec; 248(23):8313-5. PubMed ID: 4752957 [No Abstract] [Full Text] [Related]
7. [Deamination of adenine and some of its derivatives in a cell-free extract of Azotobacter vinelandii]. Kirshteĭne BE; L'vov NP; Liubimov VI; Kretovich VL Dokl Akad Nauk SSSR; 1968 Jul; 181(3):741-3. PubMed ID: 5745576 [No Abstract] [Full Text] [Related]
8. Respiratory control in Azotobacter vinelandii membranes. Jones CW; Ackrell BA; Erickson SK Biochim Biophys Acta; 1971 Aug; 245(1):54-62. PubMed ID: 4332101 [No Abstract] [Full Text] [Related]
9. Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: pyruvate kinase. Liao CL; Atkinson DE J Bacteriol; 1971 Apr; 106(1):37-44. PubMed ID: 5551641 [TBL] [Abstract][Full Text] [Related]
10. Respiratory protection of nitrogenase in Azotobacter vinelandii. Jones CW; Brice JM; Wright V; Ackrell BA FEBS Lett; 1973 Jan; 29(2):77-81. PubMed ID: 4146298 [No Abstract] [Full Text] [Related]
11. The role of adenosine monophosphate nucleosidase in the regulation of adenine nucleotide levels in Azotobacter vinelandii during aerobic-anaerobic transitions. Leung HB; Schramm VL Arch Biochem Biophys; 1978 Sep; 190(1):46-56. PubMed ID: 708078 [No Abstract] [Full Text] [Related]
12. The inducible transport of DI- and tricarboxylic acid anions across the membrane of Azotobacter vinelandii. Postma PW; van Dam K Biochim Biophys Acta; 1971 Dec; 249(2):515-27. PubMed ID: 5134194 [No Abstract] [Full Text] [Related]
13. The redox state of NAD+-NADH systems in rat liver during ketosis, and the so-called "triosephosphate block". Söling HD; Kattermann R; Schmidt H; Kneer P Biochim Biophys Acta; 1966 Jan; 115(1):1-14. PubMed ID: 4286996 [No Abstract] [Full Text] [Related]
14. [Nitrogen fixation by a cell free system of Azotobacter vinelandii]. Il'ina TK Dokl Akad Nauk SSSR; 1968 May; 180(2):476-9. PubMed ID: 4986566 [No Abstract] [Full Text] [Related]
15. Phosphorylation of 2-D-deoxyglucose and associated inorganic phosphate uptake in ascites tumor cells. Coe EL; Lee IY Biochemistry; 1969 Feb; 8(2):685-93. PubMed ID: 5793719 [No Abstract] [Full Text] [Related]
16. The transport of Krebs-cycle intermediates in Azotobacter vinelandii under various metabolic conditions. Postma PW; Cools A; van Dam K Biochim Biophys Acta; 1973 Aug; 318(1):91-104. PubMed ID: 4747078 [No Abstract] [Full Text] [Related]
17. Measurements of ATP levels of intact Azotobacter vinelandii under different conditions. Knowles CJ; Smith L Biochim Biophys Acta; 1970 Mar; 197(2):152-60. PubMed ID: 5416106 [No Abstract] [Full Text] [Related]
18. Function, substrate supply, and metabolic content of rabbit heart perfused in situ. Thorn W; Gercken G; Hürter P Am J Physiol; 1968 Jan; 214(1):139-45. PubMed ID: 5634517 [No Abstract] [Full Text] [Related]
19. [Use of the luciferin-luciferase method for ATP determination in Azotobacter vinelandii cells]. Milekhina EI; Rakhleeva EE; Sotnikov GG; Ivanov ID Mikrobiologiia; 1970; 39(4):722-6. PubMed ID: 5493367 [No Abstract] [Full Text] [Related]
20. Respiration-coupled glucose transport in membrane vesicles from Azotobacter vinelandii. Barnes EM Arch Biochem Biophys; 1972 Oct; 152(2):795-9. PubMed ID: 4404564 [No Abstract] [Full Text] [Related] [Next] [New Search]