These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5497189)

  • 1. Energy utilization by mammalian fast and slow muscle in doing external work.
    Awan MZ; Goldspink G
    Biochim Biophys Acta; 1970 Aug; 216(1):229-30. PubMed ID: 5497189
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanochemistry of cardia muscle. 3. Effects of norepinephrine on the utilization of high-energy phosphates.
    Chandler BM; Sonnenblick EH; Pool PE
    Circ Res; 1968 Jun; 22(6):729-35. PubMed ID: 5659813
    [No Abstract]   [Full Text] [Related]  

  • 3. Apparent P-O ratio and chemical energy balance in frog sartorius muscle in vitro.
    Paul RJ; Kushmerick MJ
    Biochim Biophys Acta; 1974 Jun; 347(3):483-90. PubMed ID: 4546275
    [No Abstract]   [Full Text] [Related]  

  • 4. Potassium contracture and utilization of high-energy phosphates in rabbit heart.
    Rich TL; Brady AJ
    Am J Physiol; 1974 Jan; 226(1):105-13. PubMed ID: 4809872
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemical efficiency of smooth muscle and different types of striated muscle.
    Awan MZ; Frearson N; Goldspink G; Waterson SE
    J Mechanochem Cell Motil; 1972 Dec; 1(4):225-32. PubMed ID: 4278706
    [No Abstract]   [Full Text] [Related]  

  • 6. [Energetics of muscular exercise].
    Di Prampero PE
    J Physiol (Paris); 1972; 65():Suppl 1:51A+. PubMed ID: 4569815
    [No Abstract]   [Full Text] [Related]  

  • 7. The creatine phosphoryltransfer reaction in iodoacetate-poisoned muscle.
    CARLSON FD; SIGER A
    J Gen Physiol; 1959 Nov; 43(2):301-13. PubMed ID: 13807760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High energy phosphate depletion in a model of defective muscle glycolysis.
    Brumback RA; Gerst JW; Knull HR
    Muscle Nerve; 1983 Jan; 6(1):52-5. PubMed ID: 6843586
    [No Abstract]   [Full Text] [Related]  

  • 9. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy metabolism of working muscle: concentration profiles of selected metabolites.
    Edington DW; Ward GR; Saville WA
    Am J Physiol; 1973 Jun; 224(6):1375-80. PubMed ID: 4351297
    [No Abstract]   [Full Text] [Related]  

  • 12. [Immediate sources of energy in muscle contraction].
    Maréchal G
    J Physiol (Paris); 1972; 65():Suppl 1:5A-50. PubMed ID: 4569816
    [No Abstract]   [Full Text] [Related]  

  • 13. [Muscle metabolism during work of short duration].
    Lehtonen A
    Duodecim; 1974; 90(7):447-54. PubMed ID: 4603697
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise.
    Park JH; Brown RL; Park CR; McCully K; Cohn M; Haselgrove J; Chance B
    Proc Natl Acad Sci U S A; 1987 Dec; 84(24):8976-80. PubMed ID: 3480522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy balance during muscular contraction.
    Gilbertc ; Kretzschmar M; Wilkie DR; Woledge RC
    J Physiol; 1970 Mar; 207(1):15P-16P. PubMed ID: 4251252
    [No Abstract]   [Full Text] [Related]  

  • 16. [Age characteristics in the metabolism of high-energy phosphate compounds in skeletal muscles during rest and work].
    Frol'kis VV; Epshteĭn EV
    Vopr Med Khim; 1966; 12(3):248-53. PubMed ID: 6000890
    [No Abstract]   [Full Text] [Related]  

  • 17. High-energy phosphate resynthesis from anaerobic glycolysis in frog gastrocnemius muscle.
    Cerretelli P; Di Prampero PE; Ambrosoli G
    Am J Physiol; 1972 Apr; 222(4):1021-6. PubMed ID: 4537281
    [No Abstract]   [Full Text] [Related]  

  • 18. [Resynthesis of adenosine triphosphate and phosphocreatine in skeletal muscle during recovery from exercise (author's transl)].
    Granata AL; Corsi A
    Riv Biol; 1980; 73(3):433-5. PubMed ID: 7244522
    [No Abstract]   [Full Text] [Related]  

  • 19. The mechanochemistry of cardiac muscle. I. The isometric contraction.
    Pool PE; Sonnenblick EH
    J Gen Physiol; 1967 Mar; 50(4):951-65. PubMed ID: 6034511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical energy balance in amphibian and mammalian muscles.
    Kushmerick MJ; Crow M
    Fed Proc; 1982 Feb; 41(2):163-8. PubMed ID: 6977463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.