These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 5503795)
1. Wavelength dependence of electron flow and oxygen evolution in isolated chloroplasts: a possible role for carotenoids. Gross JA; Whitfield MD Biochem Biophys Res Commun; 1970 Sep; 40(5):1216-23. PubMed ID: 5503795 [No Abstract] [Full Text] [Related]
2. Photophosphorylation as a function of light intensity. Saha S; Izawa S; Good NE Biochim Biophys Acta; 1970 Nov; 223(1):158-64. PubMed ID: 5484049 [No Abstract] [Full Text] [Related]
3. Photophosphorylation in digitonin subchloroplast particles. Absence of a light-induced pH shift. Nelson N; Drechsler Z; Neumann J J Biol Chem; 1970 Jan; 245(1):143-51. PubMed ID: 5411541 [No Abstract] [Full Text] [Related]
4. Actions of carbonylcyanide m-chlorophenylhydrazone on electron transport and fluorescence of isolated chloroplasts. Homann PH Biochim Biophys Acta; 1971 Aug; 245(1):129-43. PubMed ID: 5132468 [No Abstract] [Full Text] [Related]
5. Thiocyanato-indoles as energy-transfer inhibitors in photophosphorylation. Brandon PC Arch Biochem Biophys; 1970 Jun; 138(2):655-73. PubMed ID: 4393556 [No Abstract] [Full Text] [Related]
6. Control of excitation transfer in photosynthesis. 3. Light-induced decrease of chlorophyll a fluorescence related to photophosphorylation system in spinach chloroplasts. Murata N; Sugahara K Biochim Biophys Acta; 1969 Oct; 189(2):182-92. PubMed ID: 5350446 [No Abstract] [Full Text] [Related]
7. Localization of photophosphorylation and proton transport activities in various regions of the chloroplast lamellae. Arntzen CJ; Dilley RA; Neumann J Biochim Biophys Acta; 1971 Sep; 245(2):409-24. PubMed ID: 4400794 [No Abstract] [Full Text] [Related]
11. Localization of a site of energy coupling between plastoquinone and cytochrome f in the electron-transport chain of spinach chloroplasts. Böhme H; Cramer WA Biochemistry; 1972 Mar; 11(7):1155-60. PubMed ID: 5012973 [No Abstract] [Full Text] [Related]
12. Evaluation of electron transport as the basis of adenosine triphosphate synthesis after acid-base transition by spinach chloroplasts. Miles CD; Jagendorf AT Biochemistry; 1970 Jan; 9(2):429-34. PubMed ID: 5412667 [No Abstract] [Full Text] [Related]
13. Control of photosynthetic oxygen evolution by the internal pH of the chloroplast thylakoid. Inhibition of photosynthetic oxygen evolution by uncouplers at high pH and restoration of electron flow by an artificial electron donor for photosystem II. Harth E; Reimer S; Trebst A FEBS Lett; 1974 Jun; 42(2):165-8. PubMed ID: 4136613 [No Abstract] [Full Text] [Related]
14. Ethyl red as a probe into the mechanism of light-driven proton translocation by isolated chloroplasts. I. The spectral shift of ethyl red and membrane conformational changes. Heath RL Biochim Biophys Acta; 1973 Feb; 292(2):444-58. PubMed ID: 4703081 [No Abstract] [Full Text] [Related]
16. [Why are ammonium salts in isolated chloroplasts good uncoupling agents for photophosphorylation, however without effects in subchloroplastic vesicles?]. Hauska GA Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):712-3. PubMed ID: 5069284 [No Abstract] [Full Text] [Related]
17. Evidence for a two-directional hydrogen ion transport in chloroplasts of Euglena gracilis. Kahn JS Biochim Biophys Acta; 1971 Aug; 245(1):144-50. PubMed ID: 5002354 [No Abstract] [Full Text] [Related]
18. Light potentiation of photosynthetic oxygen evolution inhibition by water soluble chemical modifiers. Giaguinta RT; Dilley RA; Anderson BJ Biochem Biophys Res Commun; 1973 Jun; 52(4):1410-7. PubMed ID: 4717756 [No Abstract] [Full Text] [Related]
19. The inhibition of oxygen production and the uncoupling of electron transport in photosynthesis in chloroplasts by substituted thiophens. Gregory RP Biochim Biophys Acta; 1974 Nov; 368(2):228-34. PubMed ID: 4429690 [No Abstract] [Full Text] [Related]
20. Photosynthetic control in isolated spinach chloroplasts with endogenous and artificial electron acceptors. Hall DO; Reeves SG; Baltscheffsky H Biochem Biophys Res Commun; 1971 Apr; 43(2):359-66. PubMed ID: 4397030 [No Abstract] [Full Text] [Related] [Next] [New Search]