These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 5507637)

  • 1. Sensitivity of acetylcholinesterase in spider mites to organo-phosphorus compounds.
    Zahavi M; Tahori AS
    Biochem Pharmacol; 1970 Jan; 19(1):219-25. PubMed ID: 5507637
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetical linkage of malathio-resistance in Culex pipiens L.
    Tadano T
    Jpn J Exp Med; 1969 Feb; 39(1):13-6. PubMed ID: 5307427
    [No Abstract]   [Full Text] [Related]  

  • 3. Equipping a multi-engined aircraft with a fuselage-mounted spray system for the ultra-low-volume application of malathion.
    Lofgren CS; Ford HR; Tonn RJ; Jatanasen S
    Bull World Health Organ; 1970; 42(1):157-63. PubMed ID: 4392343
    [No Abstract]   [Full Text] [Related]  

  • 4. Phenotypic expression of gene OP L for resistance in twospotted spider mites tested with various organophosphates.
    Dittrich V
    J Econ Entomol; 1972 Oct; 65(5):1248-55. PubMed ID: 5085779
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative potentiation of malathion by triorthotolyl phosphate in four classes of vertebrates.
    Cohen SD; Murphy SD
    Toxicol Appl Pharmacol; 1970 May; 16(3):701-8. PubMed ID: 5422211
    [No Abstract]   [Full Text] [Related]  

  • 6. Reducing variability of Ptinus tectus Boield. (Col., Ptinidae) for bioassay of contact insecticides.
    Cutler JR; Sparrow LA
    Bull Entomol Res; 1969 Jul; 59(1):119-24. PubMed ID: 4185586
    [No Abstract]   [Full Text] [Related]  

  • 7. Susceptibility and detoxifying enzyme activity in two spider mite species (Acari: Tetranychidae) after selection with three insecticides.
    Yang X; Buschman LL; Zhu KY; Margolies DC
    J Econ Entomol; 2002 Apr; 95(2):399-406. PubMed ID: 12020020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on in vivo effect of varying doses of insecticides on the phosphomonoesterases of the desert locust (Schistocerca gregaria).
    Naqvi SN; Muzaffar SA; Qureshi SA
    Folia Biol (Krakow); 1969; 17(4):409-19. PubMed ID: 5373839
    [No Abstract]   [Full Text] [Related]  

  • 9. Acetylcholinesterases of organophosphate-susceptible and -resistant spider mites.
    Smissaert HR; Voerman S; Oostenbrugge L; Renooy N
    J Agric Food Chem; 1970; 18(1):66-75. PubMed ID: 5524466
    [No Abstract]   [Full Text] [Related]  

  • 10. Resistance to organophosphates and carbamates in Anopheles albimanus Based on reduced sensitivity of acetylcholinesterase.
    Ayad H; Georghiou P
    J Econ Entomol; 1975 Jun; 68(3):295-7. PubMed ID: 1141487
    [No Abstract]   [Full Text] [Related]  

  • 11. Organophosphorus resistance levels in adults and larvae of the pasture mosquito, Aedes nigromaculis (Ludlow) in the San Joaquin Valley of California.
    Wilder WH; Schaefer CH
    Proc Pap Annu Conf Calif Mosq Control Assoc; 1969 Jan; 37():64-7. PubMed ID: 5379928
    [No Abstract]   [Full Text] [Related]  

  • 12. Resistance potentialities of Aedes aegypti and Culex pipiens fatigans to organophosphorus and other insecticides.
    Ziv M; Brown NJ; Brown AW
    Bull World Health Organ; 1969; 41(6):941-6. PubMed ID: 5309539
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the mechanism of cyhexatin resistance in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae).
    Carbonaro MA; Moreland DE; Edge VE; Motoyama N; Rock GC; Dauterman WC
    J Econ Entomol; 1986 Jun; 79(3):576-9. PubMed ID: 2941466
    [No Abstract]   [Full Text] [Related]  

  • 14. Association of insecticide structure and resistance in Aedes nigromaculis.
    Schaefer CH; Wilder WH
    Proc Pap Annu Conf Calif Mosq Control Assoc; 1970; 38():54-5. PubMed ID: 5489573
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases.
    Oakeshott JG; Devonshire AL; Claudianos C; Sutherland TD; Horne I; Campbell PM; Ollis DL; Russell RJ
    Chem Biol Interact; 2005 Dec; 157-158():269-75. PubMed ID: 16289012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the biology of Myzus persicae Sulz. resistant and susceptible to dimethoate.
    Banks CJ; Needham PH
    Ann Appl Biol; 1970 Dec; 66(3):465-8. PubMed ID: 5491865
    [No Abstract]   [Full Text] [Related]  

  • 17. Genetics of cross-resistance to organophosphates, abate, fenitrothion and malathion in larvae of Culex pipiens pallens Coquillett.
    Tadano T
    Jpn J Exp Med; 1970 Feb; 40(1):59-66. PubMed ID: 5310941
    [No Abstract]   [Full Text] [Related]  

  • 18. Esterase inhibition in malathion poisoning in the desert locust, Schistocerca gregaria Forskal.
    Mehrotra KN; Phokela A; Saxena PN
    Indian J Exp Biol; 1969 Apr; 7(2):110-3. PubMed ID: 5798606
    [No Abstract]   [Full Text] [Related]  

  • 19. Considerations on the relationship of larval and adult tolerance to insecticides in mosquitoes.
    Georghious GP
    Proc Pap Annu Conf Calif Mosq Control Assoc; 1970; 38():55-9. PubMed ID: 5489574
    [No Abstract]   [Full Text] [Related]  

  • 20. Cat collars impregnated with dichlorvos ineffective against ear mites.
    Fox I; Bayona IG; Armstrong JL
    J Econ Entomol; 1969 Dec; 62(6):1503-4. PubMed ID: 5385065
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.