These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 551070)

  • 1. Changes in cortical intercentral relations during elementary voluntary movements.
    Pogrebnoi AI
    Hum Physiol; 1979; 5(5):844-6. PubMed ID: 551070
    [No Abstract]   [Full Text] [Related]  

  • 2. [Intercentral correlations in the formation of the motor dynamic stereotype based on data from the cross correlation analysis of human electroencephalograms].
    Sologub EB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1965; 15(1):32-41. PubMed ID: 5833028
    [No Abstract]   [Full Text] [Related]  

  • 3. [The structure of the cortical-subcortical relationships of the cerebral electrical processes during a motor polarization dominant].
    Rusinova EV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(4):591-9. PubMed ID: 9778802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is the Bereitschaftspotential?
    Shibasaki H; Hallett M
    Clin Neurophysiol; 2006 Nov; 117(11):2341-56. PubMed ID: 16876476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cinematographic analyses of human movement.
    Atwater AE
    Exerc Sport Sci Rev; 1973; 1():217-58. PubMed ID: 4806377
    [No Abstract]   [Full Text] [Related]  

  • 7. [Changes in the electrical activity of the brain during execution of voluntary movements varying in their structure].
    Ivanova MP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1967; 17(6):1125-7. PubMed ID: 5622923
    [No Abstract]   [Full Text] [Related]  

  • 8. [The characteristics of the phase relations between cortical potentials in dogs during the acquisition of motor-food conditioned reflexes].
    Dumenko VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1993; 43(1):31-41. PubMed ID: 8385397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in central EEG activity in relation to voluntary movement. I. Normal subjects.
    Pfurtscheller G; Aranibar A
    Prog Brain Res; 1980; 54():225-31. PubMed ID: 7220921
    [No Abstract]   [Full Text] [Related]  

  • 10. [Cortical motor potential associated with voluntary termination of a movement].
    Ivanova MP; Ulanov OI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1984; 34(3):437-43. PubMed ID: 6475293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement--EEG evidence.
    Leocani L; Colombo B; Magnani G; Martinelli-Boneschi F; Cursi M; Rossi P; Martinelli V; Comi G
    Neuroimage; 2001 Jun; 13(6 Pt 1):1186-92. PubMed ID: 11352624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To the question of two activating mechanisms: cortical EEG desynchronization and hippocampal "theta" rhythm.
    Irmis F
    Act Nerv Super (Praha); 1978 Feb; 20(1):22-5. PubMed ID: 636756
    [No Abstract]   [Full Text] [Related]  

  • 14. [Optimal structure of the connections of the electrical processes in the human cerebral cortex and its disorders in changes of state].
    Rusinov VS; Grindel' OM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1988; 38(6):995-1002. PubMed ID: 3072796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [High-frequency components of cortical potentials and their phase-coherent characteristics during the acquisition of motor-food conditioned reflexes in dogs].
    Dumenko VN; Kozlov MK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1988; 38(4):641-50. PubMed ID: 3195223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Slow cortical activity following voluntary movement in human].
    Laffont F; Sauvage D; Lelord G
    C R Seances Soc Biol Fil; 1971; 165(3):660-5. PubMed ID: 4258260
    [No Abstract]   [Full Text] [Related]  

  • 17. Scalp topography of movement-related cortical potentials.
    Shibasaki H; Barrett G; Halliday AM; Halliday E
    Prog Brain Res; 1980; 54():237-42. PubMed ID: 7220923
    [No Abstract]   [Full Text] [Related]  

  • 18. Timing function of the frontal cortex in sequential motor and learning tasks.
    Deecke L; Kornhuber HH; Lang W; Lang M; Schreiber H
    Hum Neurobiol; 1985; 4(3):143-54. PubMed ID: 4066425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predominance of the contralateral movement-related activity in the subthalamo-cortical loop.
    Devos D; Szurhaj W; Reyns N; Labyt E; Houdayer E; Bourriez JL; Cassim F; Krystkowiak P; Blond S; Destée A; Derambure P; Defebvre L
    Clin Neurophysiol; 2006 Oct; 117(10):2315-27. PubMed ID: 16926112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Formation of spatial synchronization in the cerebral cortex during direct electrical stimulation].
    Balashova AN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1976; 26(1):210-3. PubMed ID: 1274441
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.