These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 551259)

  • 1. Construction of haloaromatics utilising bacteria.
    Reineke W; Knackmuss HJ
    Nature; 1979 Feb; 277(5695):385-6. PubMed ID: 551259
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic adaptation of bacteria to chlorinated aromatic compounds.
    van der Meer JR
    FEMS Microbiol Rev; 1994 Oct; 15(2-3):239-49. PubMed ID: 7946469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cloning and sequence analysis of 1,2,4-trichlorobenzene dioxygenase and dehydrogenase genes].
    Jiang J; Wang H; Gao JS; Song L; Ning DL
    Huan Jing Ke Xue; 2008 Jun; 29(6):1655-9. PubMed ID: 18763518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies on the degradation of three aromatic compounds by Pseudomonas sp. and Staphylococcus xylosus.
    Ziagova MG; Liakopoulou-Kyriakides M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):1017-25. PubMed ID: 20486010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Isolation, idetification of 1,2, 4-trichlorobenzene-degrading strain Pseudomonas nitroreducens J5-1 and cloning of chlorocatechol 1,2-dioxygenase gene].
    Song L; Wang H; Jiang J; Gao JS; Shi HC
    Huan Jing Ke Xue; 2007 Aug; 28(8):1878-81. PubMed ID: 17926427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway.
    Kasberg T; Daubaras DL; Chakrabarty AM; Kinzelt D; Reineke W
    J Bacteriol; 1995 Jul; 177(13):3885-9. PubMed ID: 7601858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters.
    Göbel M; Kranz OH; Kaschabek SR; Schmidt E; Pieper DH; Reineke W
    Arch Microbiol; 2004 Oct; 182(2-3):147-56. PubMed ID: 15340793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable carbon isotope fractionation during aerobic and anaerobic transformation of trichlorobenzene.
    Griebler C; Adrian L; Meckenstock RU; Richnow HH
    FEMS Microbiol Ecol; 2004 Jun; 48(3):313-21. PubMed ID: 19712301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis and manipulation of catabolic pathways in Pseudomonas.
    Lehrbach PR; Timmis KN
    Biochem Soc Symp; 1983; 48():191-219. PubMed ID: 6100831
    [No Abstract]   [Full Text] [Related]  

  • 10. [Plasmids pBS2 and pBS3 controlling naphthalene oxidation by bacteria of the genus Pseudomonas].
    Voronin AM; Kochetkov V; Starovoitov II; Skriabin GK
    Dokl Akad Nauk SSSR; 1977 Dec; 237(5):1205-8. PubMed ID: 590083
    [No Abstract]   [Full Text] [Related]  

  • 11. Behavior in agricultural soils of a recombinant Pseudomonas bacterium that simultaneously degrades alkyl- and haloaromatics.
    Delgado A; Duque E; Ramos JL
    Microb Releases; 1992 Jun; 1(1):23-8. PubMed ID: 1341985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Oxidation of dibenzofuran by Pseudomonas strains harboring plasmids of naphthalene degradation].
    Selifonov SA; Slepen'kin AV; Adanin VM; Nefedova MIu; Starovoĭtov II
    Mikrobiologiia; 1991; 60(6):67-71. PubMed ID: 1819040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71.
    Potrawfke T; Armengaud J; Wittich RM
    J Bacteriol; 2001 Feb; 183(3):997-1011. PubMed ID: 11208799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51.
    van der Meer JR; van Neerven AR; de Vries EJ; de Vos WM; Zehnder AJ
    J Bacteriol; 1991 Jan; 173(1):6-15. PubMed ID: 1987135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experiment of biodegradation of chlorobenzenes].
    Gan P; Fan Y; Wang M
    Huan Jing Ke Xue; 2001 May; 22(3):93-6. PubMed ID: 11507916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pseudomonas putida plasmid controlling the initial stages of naphthalene oxidation].
    Boronin AM; Starovoĭtov II; Borisoglebskaia AN; Skriabin GK
    Dokl Akad Nauk SSSR; 1976; 228(4):962-5. PubMed ID: 949929
    [No Abstract]   [Full Text] [Related]  

  • 17. [Catabolic pathway of biphenyl controlled by the plasmid pBS241 in Pseudomonas putida BS893].
    Starovoĭtov II; Selifonov SA; Nefedova MIu; Adanin VM; Vinokurova NG
    Dokl Akad Nauk SSSR; 1986; 288(3):751-5. PubMed ID: 3720511
    [No Abstract]   [Full Text] [Related]  

  • 18. The genetics of dissimilarity pathways in Pseudomonas.
    Wheelis L
    Annu Rev Microbiol; 1975; 29():505-24. PubMed ID: 1180523
    [No Abstract]   [Full Text] [Related]  

  • 19. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC.
    Liu S; Ogawa N; Senda T; Hasebe A; Miyashita K
    J Bacteriol; 2005 Aug; 187(15):5427-36. PubMed ID: 16030237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial community shifts as a response to efficient degradation of chlorobenzene under hypoxic conditions.
    Kiesel B; Balcke GU; Dietrich J; Vogt C; Geyer R
    Biodegradation; 2008 Jun; 19(3):435-46. PubMed ID: 17882513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.