These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 5513574)
1. Kinetic studies on sorbose fermentation. Krieg P; Ettlinger L Pathol Microbiol (Basel); 1970; 36(5):343. PubMed ID: 5513574 [No Abstract] [Full Text] [Related]
2. [Studies on sorbose fermentation in a batch and continuous cultures]. Müller J Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(4):349-78. PubMed ID: 6012785 [No Abstract] [Full Text] [Related]
3. [A method for the control of the inoculum during biological oxidation of sorbitol into sorbose]. SHTERNBERG MG; ZHURUBITSA SI Mikrobiologiia; 1960; 29():146-9. PubMed ID: 14446257 [No Abstract] [Full Text] [Related]
4. [Gas exchange in Acetobacter during oxidation of sorbitol with sorbose]. MITIUSHOVA NM Mikrobiologiia; 1954; 23(4):400-9. PubMed ID: 13223517 [No Abstract] [Full Text] [Related]
5. [Researches to the conversion of sorbit into sorbose by Acetobacter suboxydans (author's transl)]. Kölblin R; Tröger R Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(3):196-203. PubMed ID: 22208 [TBL] [Abstract][Full Text] [Related]
6. Fermentative production of L-sorbose from D-sorbitol by Acetobacter suboxydans (vinegar isolate). Indian J Exp Biol; 1974 Sep; 12(5):422-4. PubMed ID: 4448494 [No Abstract] [Full Text] [Related]
7. [Effect of methylene blue on oxidation of sorbitol into sorbose by Acetobacter melanogenum]. MIKHLIN ED; GOLYSHEVA MG Biokhimiia; 1954; 19(5):549-56. PubMed ID: 13230126 [No Abstract] [Full Text] [Related]
8. Biochemical dehydrogenations of saccharides. V. Isolation of 5-ketosorbose formed during sorbose fermentation. Kulhánek M; Sevcíková Z Folia Microbiol (Praha); 1965 Nov; 10(6):362-4. PubMed ID: 5861553 [No Abstract] [Full Text] [Related]
9. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Zhou X; Hua X; Zhou X; Xu Y; Zhang W Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939 [TBL] [Abstract][Full Text] [Related]
10. Long-term storage of acetic acid bacteria by means of lyophilization. Sourek J; Kulhánek M Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(6):580-5. PubMed ID: 4912749 [No Abstract] [Full Text] [Related]
11. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396 [TBL] [Abstract][Full Text] [Related]
12. 5-Deoxy-5-fluoro-L-sorbose originating from 2-deoxy-2-fluoro-D-glucitol by fermentation with Acetomonas oxydans. Kulhánek M; Tadra M; Pacák J; Trejbalová H; Cerný M Folia Microbiol (Praha); 1977; 22(4):295-7. PubMed ID: 892670 [TBL] [Abstract][Full Text] [Related]
13. [Effect of partial pressure of oxygen on the oxidation of sorbite into sorbose by bacteria Acetobacter melanogenum]. MIKHLIN E; ROZENBERG I Biokhimiia; 1950; 15(5):444-7. PubMed ID: 14820957 [No Abstract] [Full Text] [Related]
14. Fermentation processes employed in vitamin C synthesis. Kulhánek M Adv Appl Microbiol; 1970; 12():11-33. PubMed ID: 4920194 [No Abstract] [Full Text] [Related]
15. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans. De Wulf P; Soetaert W; Vandamme EJ Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414 [TBL] [Abstract][Full Text] [Related]
16. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
17. [On the significance of the concentration of substances in contrast media in the oxidation of sorbitol by acetic bacteria]. RAZUMOVSKAIA ZG Tr Latv Padomju Soc Repub Zinat Akad Mikrobiol Inst; 1959; 6():46-51. PubMed ID: 14436690 [No Abstract] [Full Text] [Related]
18. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. Shinjoh M; Tazoe M; Hoshino T J Bacteriol; 2002 Feb; 184(3):861-3. PubMed ID: 11790761 [TBL] [Abstract][Full Text] [Related]
19. [The influence of cultivation conditions on the levan saccharase activity of Acetobacter suboxydans var. levanicum L-1]. Elisashvili VI Prikl Biokhim Mikrobiol; 1974; 10(2):216-21. PubMed ID: 4830969 [No Abstract] [Full Text] [Related]
20. The biological oxidation of sorbitol. CHELDELIN VH; CUMMINS JT; KING TE J Biol Chem; 1957 Jan; 224(1):323-9. PubMed ID: 13398408 [No Abstract] [Full Text] [Related] [Next] [New Search]