These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Differences of ipsilateral and contralateral visually evoked responses in the cat: strains compared. Creel DJ J Comp Physiol Psychol; 1971 Oct; 77(1):161-5. PubMed ID: 5120681 [No Abstract] [Full Text] [Related]
4. The origin of spontaneous, rhythmic potentials in the visual system of rats. Anderson KV; O'Steen WK Exp Neurol; 1971 Mar; 30(3):555-64. PubMed ID: 5554238 [No Abstract] [Full Text] [Related]
5. Visually evoked responses in the rat, guinea pig, cat, monkey, and man. Creel DJ; Dustman RE; Beck EC Exp Neurol; 1973 Aug; 40(2):351-66. PubMed ID: 4199749 [No Abstract] [Full Text] [Related]
6. Enhancement by ethanol of visually evoked responses in the goldfish optic tectum. Ingle D Exp Neurol; 1971 Nov; 33(2):329-42. PubMed ID: 5124953 [No Abstract] [Full Text] [Related]
7. Organization of the turtle thalamus: visual, somatic and tectal zones. Belekhova MG; Kosareva AA Brain Behav Evol; 1971; 4(5):337-75. PubMed ID: 5112578 [No Abstract] [Full Text] [Related]
8. Intensity of flash illumination and the visually evoked potential of rats, guinea pigs and cats. Creel D; Dustman RE; Beck EC Vision Res; 1974 Aug; 14(8):725-9. PubMed ID: 4422574 [No Abstract] [Full Text] [Related]
9. [Role of the cortical and thalamic levels in the formation of recovery cycles of evoked potentials of the visual zone of the cerebral cortex]. Supin AIa Fiziol Zh SSSR Im I M Sechenova; 1966 Nov; 52(11):1297-304. PubMed ID: 6000934 [No Abstract] [Full Text] [Related]
11. [Control of afferentation dynamics at different levels of the visual system]. Shevelev IA Biofizika; 1971; 16(2):320-6. PubMed ID: 5572259 [No Abstract] [Full Text] [Related]
12. Photically evoked responses in the visual system of rats exposed to continuous light. O'Steen WK; Anderson KV Exp Neurol; 1971 Mar; 30(3):525-34. PubMed ID: 5554237 [No Abstract] [Full Text] [Related]
13. The effect of monocular deprivation on cat parastriate cortex: asymmetry between crossed and uncrossed pathways. Singer W Brain Res; 1978 Nov; 157(2):351-5. PubMed ID: 719527 [No Abstract] [Full Text] [Related]
14. The refractory time in the visual cortex of albino guinea-pigs. Simonsen SE Acta Physiol Scand; 1969 Mar; 75(3):387-96. PubMed ID: 5790229 [No Abstract] [Full Text] [Related]
15. Optics and visual physiology. Siegel IM Arch Ophthalmol; 1973 Oct; 90(4):327-36. PubMed ID: 4201021 [No Abstract] [Full Text] [Related]
16. Cortical and subcortical responses to flicker in cats. Sturr JF; Shansky MS Exp Neurol; 1971 Nov; 33(2):279-90. PubMed ID: 5124949 [No Abstract] [Full Text] [Related]
17. Effect of tetanization and enucleation upon excitability of visual pathways in squirrel monkeys and cats. Fentress JC; Doty RW Exp Neurol; 1971 Mar; 30(3):535-54. PubMed ID: 4101832 [No Abstract] [Full Text] [Related]
18. [Reactions of the fibers of the crayfish optic nerve and commissure to light stimulation of the eye]. Alekseeva NA Fiziol Zh SSSR Im I M Sechenova; 1974 Dec; 60(12):1791-5. PubMed ID: 4375565 [No Abstract] [Full Text] [Related]
19. The relationship of optic nerve fiber groups activated by electrical stimulation to the consequent central postsynaptic events. Clare MH; Landau WM; Bishop GH Exp Neurol; 1969 Jul; 24(3):400-20. PubMed ID: 4308262 [No Abstract] [Full Text] [Related]
20. Cortical responses to light in unanesthetized monkeys and their alteration by visual system lesions. Vaughan HG; Gross CG Exp Brain Res; 1969; 8(1):19-36. PubMed ID: 4980203 [No Abstract] [Full Text] [Related] [Next] [New Search]