These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 551763)

  • 41. Electrocochleographic recordings in acute and healed perilymphatic fistula.
    Campbell KC; Savage MM
    Arch Otolaryngol Head Neck Surg; 1992 Mar; 118(3):301-4. PubMed ID: 1554452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human auditory steady state potentials.
    Stapells DR; Linden D; Suffield JB; Hamel G; Picton TW
    Ear Hear; 1984; 5(2):105-13. PubMed ID: 6724170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical and physiological changes during short-term and chronic electrical stimulation of the normal cochlea.
    Charlet de Sauvage R; Lima da Costa D; Erre JP; Aran JM
    Hear Res; 1997 Aug; 110(1-2):119-34. PubMed ID: 9282894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrocochleography in the presence and absence of perilymphatic fistula.
    Campbell KC; Savage MM; Harker LA
    Ann Otol Rhinol Laryngol; 1992 May; 101(5):403-7. PubMed ID: 1570934
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brainstem electrical responses from selected tone pip stimuli.
    Wood MH; Seitz MR; Jacobson JT
    J Am Aud Soc; 1979; 5(3):156-62. PubMed ID: 528293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Correlation of the latency shift and brain stem potentials in basocochlear hearing loss and the time course of the click stimulus-induced evoked wave in the cochlea].
    Janssen T; Steinhoff HJ; Böhnke F
    Laryngorhinootologie; 1989 Jul; 68(7):379-82. PubMed ID: 2765050
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal correspondence of intracranial, cochlear and scalp-recorded human auditory nerve action potentials.
    Pratt H; Martin WH; Schwegler JW; Rosenwasser RH; Rosenberg SI; Flamm ES
    Electroencephalogr Clin Neurophysiol; 1992; 84(5):447-55. PubMed ID: 1382954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of the effect of 350-Hz tone exposure on electrophysiological function of the inner ear of guinea pigs.
    Yamamura K; Sugisawa T; Inada N; Matsui T; Ishida A
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(1):10-4. PubMed ID: 1584586
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-synchrony cochlear compound action potentials evoked by rising frequency-swept tone bursts.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Oct; 78(4):1286-95. PubMed ID: 3840500
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the origin of the compound action potentials (N1, N2) of the cochlea of the rat.
    Møller AR
    Exp Neurol; 1983 Jun; 80(3):633-44. PubMed ID: 6852156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Frequency analysis of the various stimuli used in brain stem electric response].
    Vogeleer M; Van der Aa P
    Acta Otorhinolaryngol Belg; 1980; 34(3):246-53. PubMed ID: 7234364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brainstem responses to electrical stimulation of cochlea.
    Dobie RA; Kimm J
    Arch Otolaryngol; 1980 Sep; 106(9):573-7. PubMed ID: 6773514
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Technical aspects of brainstem evoked potential audiometry using tones.
    Stapells DR; Picton TW
    Ear Hear; 1981; 2(1):20-9. PubMed ID: 7239023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli.
    Neely ST; Norton SJ; Gorga MP; Jesteadt W
    J Acoust Soc Am; 1988 Feb; 83(2):652-6. PubMed ID: 3351122
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compound impulse response for the brain stem derived through combinations of cochlear and brain stem recordings.
    Elberling C
    Scand Audiol; 1978; 7(3):147-57. PubMed ID: 756079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC; Versnel H; Prijs VF; Klis SF
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The reaction of the guinea pig cochlea to perforations of the round window membrane with and without perilymph aspiration.
    Mertens J
    Eur Arch Otorhinolaryngol; 1991; 248(7):395-9. PubMed ID: 1747246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Criteria for the differential diagnosis of cochlear-retrocochlear disorders with brain stem audiometry (author's transl)].
    Zöllner C; Eibach H
    Arch Otorhinolaryngol; 1981; 230(2):135-47. PubMed ID: 7295173
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.
    McMahon CM; Brown DJ; Patuzzi RB
    Hear Res; 2004 Apr; 190(1-2):75-86. PubMed ID: 15051131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.