These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 551842)
1. The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon): The archicortex. Jacobs MS; McFarland WL; Morgane PJ Brain Res Bull; 1979; 4 Suppl 1():1-108. PubMed ID: 551842 [TBL] [Abstract][Full Text] [Related]
2. The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. Morgane PJ; McFarland WL; Jacobs MS J Hirnforsch; 1982; 23(5):465-552. PubMed ID: 7161482 [TBL] [Abstract][Full Text] [Related]
3. The insular formations of the dolphin brain: quantitative cytoarchitectonic studies of the insular component of the limbic lobe. Jacobs MS; Galaburda AM; McFarland WL; Morgane PJ J Comp Neurol; 1984 May; 225(3):396-432. PubMed ID: 6725651 [TBL] [Abstract][Full Text] [Related]
4. The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (rhinencephalon). I. The paleocortex. Jacobs MS; Morgane PJ; McFarland WL J Comp Neurol; 1971 Feb; 141(2):205-71. PubMed ID: 5541352 [No Abstract] [Full Text] [Related]
5. Ventricular system of the brain of the dolphin, Tursiops truncatus, with comparative anatomical observations and relations to brain specializations. McFarland WL; Morgane PJ; Jacobs MS J Comp Neurol; 1969 Mar; 135(3):275-368. PubMed ID: 4976943 [No Abstract] [Full Text] [Related]
6. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. Cavada C; Goldman-Rakic PS J Comp Neurol; 1989 Sep; 287(4):393-421. PubMed ID: 2477405 [TBL] [Abstract][Full Text] [Related]
7. Limbic lobe embryology and anatomy: dissection and MR of the medial surface of the fetal cerebral hemisphere. Kier EL; Fulbright RK; Bronen RA AJNR Am J Neuroradiol; 1995 Oct; 16(9):1847-53. PubMed ID: 8693985 [TBL] [Abstract][Full Text] [Related]
8. Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Marino L; Sudheimer KD; Murphy TL; Davis KK; Pabst DA; McLellan WA; Rilling JK; Johnson JI Anat Rec; 2001 Dec; 264(4):397-414. PubMed ID: 11745095 [TBL] [Abstract][Full Text] [Related]
9. Ultrastructure of synapses and golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Glezer II; Morgane PJ Brain Res Bull; 1990 Mar; 24(3):401-27. PubMed ID: 2337821 [TBL] [Abstract][Full Text] [Related]
10. Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. Seltzer B; Pandya DN J Comp Neurol; 1991 Oct; 312(4):625-40. PubMed ID: 1761745 [TBL] [Abstract][Full Text] [Related]
11. Histological, immunohistochemical and pathological features of the pituitary gland of odontocete cetaceans from the Western gulf of Mexico. Cowan DF; Haubold EM; Tajima Y J Comp Pathol; 2008; 139(2-3):67-80. PubMed ID: 18621384 [TBL] [Abstract][Full Text] [Related]
12. Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. Garey LJ; Winkelmann E; Brauer K J Comp Neurol; 1985 Oct; 240(3):305-21. PubMed ID: 2415558 [TBL] [Abstract][Full Text] [Related]
13. The neocortex of cetartiodactyls: I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Butti C; Janeway CM; Townshend C; Wicinski BA; Reidenberg JS; Ridgway SH; Sherwood CC; Hof PR; Jacobs B Brain Struct Funct; 2015 Nov; 220(6):3339-68. PubMed ID: 25100560 [TBL] [Abstract][Full Text] [Related]
14. The commissural connections of the monkey hippocampal formation. Amaral DG; Insausti R; Cowan WM J Comp Neurol; 1984 Apr; 224(3):307-36. PubMed ID: 6715582 [TBL] [Abstract][Full Text] [Related]
15. The parathyroid glands of two species of dolphin--Risso's dolphin, Grampus griseus, and bottlenose dolphin, Tursiops truncatus. Hayakawa D; Chen H; Emura S; Tamada A; Yamahira T; Terasawa K; Isono H; Shoumura S Gen Comp Endocrinol; 1998 Apr; 110(1):58-66. PubMed ID: 9514847 [TBL] [Abstract][Full Text] [Related]
16. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. Mesulam MM; Mufson EJ J Comp Neurol; 1982 Nov; 212(1):1-22. PubMed ID: 7174905 [TBL] [Abstract][Full Text] [Related]
17. Visual cortex of the dolphin: an image analysis study. Morgane PJ; Glezer II; Jacobs MS J Comp Neurol; 1988 Jul; 273(1):3-25. PubMed ID: 3209729 [TBL] [Abstract][Full Text] [Related]
18. Cetacean brain evolution: Dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis) - An investigation with high-resolution 3D MRI. Oelschläger HH; Ridgway SH; Knauth M Brain Behav Evol; 2010; 75(1):33-62. PubMed ID: 20203478 [TBL] [Abstract][Full Text] [Related]
19. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Goldman-Rakic PS; Selemon LD; Schwartz ML Neuroscience; 1984 Jul; 12(3):719-43. PubMed ID: 6472617 [TBL] [Abstract][Full Text] [Related]
20. A functional comparison of the hyolingual complex in pygmy and dwarf sperm whales (Kogia breviceps and K. sima), and bottlenose dolphins (Tursiops truncatus). Bloodworth BE; Marshall CD J Anat; 2007 Jul; 211(1):78-91. PubMed ID: 17555545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]