These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 5522096)

  • 1. Encephalization and visual cortex in the Tree Shrew (Tupaia glis).
    Ward JP; Masterton B
    Brain Behav Evol; 1970; 3(5):421-69. PubMed ID: 5522096
    [No Abstract]   [Full Text] [Related]  

  • 2. Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis).
    Harting JK; Diamond IT; Hall WC
    J Comp Neurol; 1973 Aug; 150(4):393-440. PubMed ID: 4727888
    [No Abstract]   [Full Text] [Related]  

  • 3. Differential effects of two visual cortical lesions in the rabbit.
    Moore DT; Murphy EH
    Exp Neurol; 1976 Oct; 53(1):21-30. PubMed ID: 964338
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of neonatal and adult striate lesions on visual discrimination in the rabbit.
    Murphy EH; Stewart DL
    Exp Neurol; 1974 Jan; 42(1):89-96. PubMed ID: 4825743
    [No Abstract]   [Full Text] [Related]  

  • 5. Ablation study of the superior colliculus in the tree shrew (Tupaia glis).
    Casagrande VA; Diamond IT
    J Comp Neurol; 1974 Jul; 156(2):207-37. PubMed ID: 4424699
    [No Abstract]   [Full Text] [Related]  

  • 6. Does the acuity of the tree shrew suffer from removal of striate cortex? A commentary on the paper by ward and Masterton.
    Ware CB; Casagrande VA; Diamond IT
    Brain Behav Evol; 1972; 5(1):18-29. PubMed ID: 5072746
    [No Abstract]   [Full Text] [Related]  

  • 7. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis).
    Sherman SM; Norton TT; Casagrande VA
    Brain Res; 1975 Jul; 93(1):152-7. PubMed ID: 806329
    [No Abstract]   [Full Text] [Related]  

  • 8. Modifications of pulvinar and geniculo-cortical evoked potentials during visual discrimination learning in monkeys.
    Gould JE; Chalupa LM; Lindsley DB
    Electroencephalogr Clin Neurophysiol; 1974 Jun; 36(6):639-49. PubMed ID: 4135471
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of ablating the striate cortex on a successive pattern discrimination:further study of the visual system in the tree shrew (Tupaia glis).
    Ware CB; Diamond IT; Casagrande VA
    Brain Behav Evol; 1974; 9(4):264-79. PubMed ID: 4218798
    [No Abstract]   [Full Text] [Related]  

  • 10. Organization of the visual afferents into the LGd and the pulvinar of the tree shrew Tupaia glis.
    Ohno T; Misgeld U; Kitai ST; Wagner A
    Brain Res; 1975 Jun; 90(1):153-8. PubMed ID: 805632
    [No Abstract]   [Full Text] [Related]  

  • 11. Laminar organization of tree shrew dorsal lateral geniculate nucleus.
    Conway JL; Schiller PH
    J Neurophysiol; 1983 Dec; 50(6):1330-42. PubMed ID: 6663330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extrageniculostriate vision in the monkey. V. Role of accessory optic system.
    Pasik P; Pasik T
    J Neurophysiol; 1973 May; 36(3):450-7. PubMed ID: 4633362
    [No Abstract]   [Full Text] [Related]  

  • 13. Survival of pattern vision after removal of striate cortex in the adult cat.
    Doty RW
    J Comp Neurol; 1971 Nov; 143(3):341-69. PubMed ID: 5134324
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism underpinning the sharpening of orientation and spatial frequency selectivities in the tree shrew (Tupaia belangeri) primary visual cortex.
    Mohan YS; Viswanathan S; Jayakumar J; Lloyd EKJ; Vidyasagar TR
    Brain Struct Funct; 2022 May; 227(4):1265-1278. PubMed ID: 35118562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed visual locus approach of destriate tree shrews (Tupaia glis).
    Moss ME; Ward JP
    Exp Neurol; 1979 Sep; 65(3):645-53. PubMed ID: 467564
    [No Abstract]   [Full Text] [Related]  

  • 16. Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field.
    Kaas JH; Hall WC; Killackey H; Diamond IT
    Brain Res; 1972 Jul; 42(2):491-6. PubMed ID: 5050179
    [No Abstract]   [Full Text] [Related]  

  • 17. Receptive fields of neurons in areas 17 and 18 of tree shrews (Tupaia glis).
    Kaufmann PG; Somjen GG
    Brain Res Bull; 1979; 4(3):319-25. PubMed ID: 487187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional recovery after lesions of the nervous system. 3. Developmental processes in neural plasticity. Anomalous axonal connections implicated in sparing and alteration of function after early lesions.
    Schneider GE
    Neurosci Res Program Bull; 1974 Jun; 12(2):222-7. PubMed ID: 4846199
    [No Abstract]   [Full Text] [Related]  

  • 19. Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17.
    Dreher B; Cottee LJ
    J Neurophysiol; 1975 Jul; 38(4):735-50. PubMed ID: 1159462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for "sustained" and "transient" neurones in the cat's visual cortex.
    Ikeda H; Wright MJ
    Vision Res; 1974 Jan; 14(1):133-6. PubMed ID: 4812911
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.