These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 5527900)

  • 1. Optimization of batch fermentation processes. II. Optimum temperature profiles for batch penicillin fermentations.
    Constantinides A; Spencer JL; Gaden EL
    Biotechnol Bioeng; 1970 Nov; 12(6):1081-98. PubMed ID: 5527900
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimization of batch fermentation processes. I. Development of mathematical models for batch penicillin fermentations.
    Constantinides A; Spencer JL; Gaden EL
    Biotechnol Bioeng; 1970 Sep; 12(5):803-30. PubMed ID: 5489784
    [No Abstract]   [Full Text] [Related]  

  • 3. On-line identification of the state and parameters for fed-batch penicillin fermentation process.
    Jin S; Zhang SL; Yu JT
    Chin J Biotechnol; 1989; 5(4):241-51. PubMed ID: 2491334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Modelling a penicillin fed-batch fermentation using least squares support vector machines].
    Liu Y; Wang HQ
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):144-9. PubMed ID: 16572855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fed-batch production of the model recombinant protein GFP in Lactococcus lactis.
    Oddone GM; Lan CQ; Rawsthorne H; Mills DA; Block DE
    Biotechnol Bioeng; 2007 Apr; 96(6):1127-38. PubMed ID: 17117427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphologically structured model for antitumoral retamycin production during batch and fed-batch cultivations of Streptomyces olindensis.
    Giudici R; Pamboukian CR; Facciotti MC
    Biotechnol Bioeng; 2004 May; 86(4):414-24. PubMed ID: 15112294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation.
    Ohya T; Ohyama M; Kobayashi K
    Biotechnol Bioeng; 2005 Jun; 90(7):876-87. PubMed ID: 15864809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; PĂ©rez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parahydroxyphenoxymethyl penicillin, a by-product of phenoxymethyl penicillin fermentations.
    DE FLINES J; WAISVISZ JM; HOETTE I; STRUYK AP
    Antibiot Chemother (Northfield); 1957 Sep; 7(9):497-9. PubMed ID: 24544535
    [No Abstract]   [Full Text] [Related]  

  • 13. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation.
    Zhang W; Sinha J; Smith LA; Inan M; Meagher MM
    Biotechnol Prog; 2005; 21(2):386-93. PubMed ID: 15801775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium.
    Vaningelgem F; Zamfir M; Adriany T; De Vuyst L
    J Appl Microbiol; 2004; 97(6):1257-73. PubMed ID: 15546417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-up and optimization of the low-temperature inducible cspA promoter system.
    Vasina JA; Peterson MS; Baneyx F
    Biotechnol Prog; 1998; 14(5):714-21. PubMed ID: 9758660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrocarbon fermentations using Candida lipolytica. II. A model for cell growth kinetics.
    Moo-Young M; Shimizu T
    Biotechnol Bioeng; 1971 Nov; 13(6):761-78. PubMed ID: 5135528
    [No Abstract]   [Full Text] [Related]  

  • 17. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation.
    Basak S; Velayudhan A; Ladisch MR
    Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective optimization in Aspergillus niger fermentation for selective product enhancement.
    Mandal C; Gudi RD; Suraishkumar GK
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):149-64. PubMed ID: 16217656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic changes in submerged penicillin fermentations on synthetic media.
    KOFFLER H; KNIGHT SG
    J Bacteriol; 1946 Mar; 51():385-92. PubMed ID: 21018713
    [No Abstract]   [Full Text] [Related]  

  • 20. Ant colony system algorithm for the optimization of beer fermentation control.
    Xiao J; Zhou ZK; Zhang GX
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1597-603. PubMed ID: 15547970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.