These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 552814)

  • 1. Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris.
    Eley JH; Knobloch K; Han TW
    Antonie Van Leeuwenhoek; 1979; 45(4):521-9. PubMed ID: 552814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate metabolism in Rhodopseudomonas gelatinosa and several other Rhodospirillaceae.
    Albers H; Gottschalk G
    Arch Microbiol; 1976 Dec; 111(1-2):45-9. PubMed ID: 1015959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata.
    Beatty JT; Gest H
    J Bacteriol; 1981 Nov; 148(2):584-93. PubMed ID: 7298578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Regulation of carbon flows in the tricarboxylic acid cycle-glyoxylate bypass system in Rhodopseudomonas palustris under different growth conditions].
    Eprintsev AT; Klimova MA; Falaleeva MI; Kompantseva EI
    Mikrobiologiia; 2008; 77(2):158-62. PubMed ID: 18522315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle.
    McKinlay JB; Oda Y; Rühl M; Posto AL; Sauer U; Harwood CS
    J Biol Chem; 2014 Jan; 289(4):1960-70. PubMed ID: 24302724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Growth of Ectothiorhodospira mobilis in the dark].
    Krasil'nikova EN; Zakharchuk LM; Linnik LM
    Mikrobiologiia; 1980; 49(2):244-8. PubMed ID: 6771498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation by illumination of the citric acid cycle activity in Rhodopseudomonas spheroides.
    Tuboi S; Kikuchi G
    J Biochem; 1966 May; 59(5):456-62. PubMed ID: 5961494
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulation of the TCA and glyoxylate cycles in Brevibacterium flavum. I. Ingibition of isocitrate lyase and isocitrate dehydrogenase by organic acids related to the TCA and glyoxylate cycles.
    Ozaki H; Shiio I
    J Biochem; 1968 Sep; 64(3):355-63. PubMed ID: 5707822
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of organic acids in Rhodopseudomonas palustris in light and dark.
    MORITA S
    J Biochem; 1961 Sep; 50():190-6. PubMed ID: 14476123
    [No Abstract]   [Full Text] [Related]  

  • 10. [Growth in the dark and the NADH-oxidase activity of Rhodopseudomonas palustris].
    Rodova NA; Krasil'nikova EN
    Mikrobiologiia; 1974 Mar; 43(2):208-13. PubMed ID: 4151335
    [No Abstract]   [Full Text] [Related]  

  • 11. [Thiosulfate metabolism in Rhodopseudomonas palustris].
    Rodova NA; Pedan LV
    Mikrobiologiia; 1980; 49(2):221-6. PubMed ID: 6771496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Acetate metabolism in Ectothiorhodospira shaposhnikovii growing in the dark].
    Zakharchuk LM; Ivanovskiĭ RN; Kondrat'eva EN
    Mikrobiologiia; 1980; 49(3):383-8. PubMed ID: 7402118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic induction of isocitrate lyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle.
    Lu Y; Wu YR; Han B
    Acta Biochim Biophys Sin (Shanghai); 2005 Jun; 37(6):406-14. PubMed ID: 15944756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of acetate by Beggiatoa.
    Burton SD; Morita RY; Miller W
    J Bacteriol; 1966 Mar; 91(3):1192-200. PubMed ID: 5929751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calvin cycle mutants of photoheterotrophic purple nonsulfur bacteria fail to grow due to an electron imbalance rather than toxic metabolite accumulation.
    Gordon GC; McKinlay JB
    J Bacteriol; 2014 Mar; 196(6):1231-7. PubMed ID: 24415727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.
    Zhang S; Bryant DA
    J Biol Chem; 2015 May; 290(22):14019-30. PubMed ID: 25869135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pigment synthesis by a mutant of Rhodopseudomonas palustris in different growth conditions].
    Uspenskaia VE; Lyskova GV
    Mikrobiologiia; 1972; 41(6):1038-44. PubMed ID: 4657957
    [No Abstract]   [Full Text] [Related]  

  • 19. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris.
    Laguna R; Tabita FR; Alber BE
    Arch Microbiol; 2011 Feb; 193(2):151-4. PubMed ID: 21104179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton correlation NMR studies of metabolism in Rhodopseudomonas palustris.
    Imai Y; Morita S; Arata Y
    J Biochem; 1984 Sep; 96(3):691-9. PubMed ID: 6501261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.