These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 553146)

  • 21. Structure of reticulospinal axon growth cones and their cellular environment during regeneration in the lamprey spinal cord.
    Lurie DI; Pijak DS; Selzer ME
    J Comp Neurol; 1994 Jun; 344(4):559-80. PubMed ID: 7929892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of directional specificity in the regeneration of lamprey spinal axons.
    Mackler SA; Yin HS; Selzer ME
    J Neurosci; 1986 Jun; 6(6):1814-21. PubMed ID: 3712011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular differentiation of neurons from ependyma-derived cells in tissue cultures of regenerating teleost spinal cord.
    Anderson MJ; Waxman SG; Lee YL; Eng LF
    Brain Res; 1987 Jul; 388(2):131-6. PubMed ID: 3113659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Axonal regeneration in lamprey spinal cord.
    Yin HS; Selzer ME
    J Neurosci; 1983 Jun; 3(6):1135-44. PubMed ID: 6854366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth associated protein 43 and neurofilament immunolabeling in the transected lumbar spinal cord of lizard indicates limited axonal regeneration.
    Alibardi L
    Neural Regen Res; 2022 May; 17(5):1034-1041. PubMed ID: 34558530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origin of spinal cord axons in the lizard regenerated tail: supernormal projections from local spinal neurons.
    Duffy MT; Simpson SB; Liebich DR; Davis BM
    J Comp Neurol; 1990 Mar; 293(2):208-22. PubMed ID: 19189712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ependymal cells variations in the central canal of the rat spinal cord filum terminale: an ultrastructural investigation.
    Mitro A; Gallatz K; Palkovits M; Kiss A
    Endocr Regul; 2013 Apr; 47(2):93-9. PubMed ID: 23641790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord.
    Bernstein JJ; Bernstein ME
    Exp Neurol; 1967 Sep; 19(1):25-32. PubMed ID: 6051300
    [No Abstract]   [Full Text] [Related]  

  • 30. Electron microscopic observations of the mechanisms of terminal club formation in transected spinal cord axons.
    Kao CC; Chang LW; Bloodworth JM
    J Neuropathol Exp Neurol; 1977 Jan; 36(1):140-56. PubMed ID: 64594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat.
    Matthews MA; St Onge MF; Faciane CL
    Acta Neuropathol; 1979 Jan; 45(1):27-36. PubMed ID: 760363
    [No Abstract]   [Full Text] [Related]  

  • 33. Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche.
    Marichal N; Reali C; Trujillo-Cenóz O; Russo RE
    Adv Exp Med Biol; 2017; 1041():55-79. PubMed ID: 29204829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histopathological reactions an axonal regeneration in the transected spinal cord of Hibernating squirrels.
    Guth L; Barrett CP; Donati EJ; Deshpande SS; Albuquerque EX
    J Comp Neurol; 1981 Dec; 203(2):297-308. PubMed ID: 7309924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An ependymal cell culture system for the study of spinal cord regeneration.
    Chernoff EA; Henry LC; Spotts T
    Wound Repair Regen; 1998; 6(4):403-12. PubMed ID: 9824560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish.
    Becker T; Becker CG
    J Comp Neurol; 2001 Apr; 433(1):131-47. PubMed ID: 11283955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Penetration of grafted astrocytic scars by regenerating optic nerve axons in Xenopus tadpoles.
    Reier PJ
    Brain Res; 1979 Mar; 164():61-8. PubMed ID: 427571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ependyma formation in adult rat spinal cord after transplantation of fetal cerebral cortex homografts.
    Bernstein JJ
    J Neurosci Res; 1986; 15(4):481-90. PubMed ID: 3723608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study.
    Seitz R; Löhler J; Schwendemann G
    Cell Tissue Res; 1981; 220(1):61-72. PubMed ID: 7273132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.