These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 553416)

  • 1. Antibody-dependent cell-mediated cytotoxicity is exerted by multiple sclerosis peripheral mononuclear cells against cultured CNS targets.
    Morrell RM
    Trans Am Neurol Assoc; 1979; 104():221-4. PubMed ID: 553416
    [No Abstract]   [Full Text] [Related]  

  • 2. [The lymphocyte abnormality in CNS disease].
    Matsubara H; Igata A
    No To Shinkei; 1983 May; 35(5):423-31. PubMed ID: 6354216
    [No Abstract]   [Full Text] [Related]  

  • 3. Multiple sclerosis and central nervous system demyelination.
    Pouly S; Antel JP
    J Autoimmun; 1999 Nov; 13(3):297-306. PubMed ID: 10550217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD16+ gammadelta T cells mediate antibody dependent cellular cytotoxicity: potential mechanism in the pathogenesis of multiple sclerosis.
    Chen Z; Freedman MS
    Clin Immunol; 2008 Aug; 128(2):219-27. PubMed ID: 18501678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pathogenesis of multiple sclerosis. Antibody dependent cytotoxicity of lymphocytes against myelin basic proteins in multiple sclerosis].
    Frick E; Stickl H
    Fortschr Med; 1977 Oct; 95(37):2235-41. PubMed ID: 914178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment.
    Krumbholz M; Theil D; Cepok S; Hemmer B; Kivisäkk P; Ransohoff RM; Hofbauer M; Farina C; Derfuss T; Hartle C; Newcombe J; Hohlfeld R; Meinl E
    Brain; 2006 Jan; 129(Pt 1):200-11. PubMed ID: 16280350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serum-induced enhancement of peripheral blood mononuclear cell-mediated cytotoxicity towards human target cells in systemic sclerosis.
    Penning CA; Wright JK; Ashby JC; Cunningham J; Rowell NR; Hughes P
    J Clin Lab Immunol; 1983 Oct; 12(2):77-81. PubMed ID: 6644792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis.
    McCandless EE; Klein RS
    Expert Rev Mol Med; 2007 Jul; 9(20):1-19. PubMed ID: 17637110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B-cell differentiation in the CNS of patients with multiple sclerosis.
    Corcione A; Aloisi F; Serafini B; Capello E; Mancardi GL; Pistoia V; Uccelli A
    Autoimmun Rev; 2005 Nov; 4(8):549-54. PubMed ID: 16214094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody-secreting cells in the central nervous system in an animal model of MS: Phenotype, association with disability, and in vitro production of antibody.
    Pachner AR; Brady J; Narayan K
    J Neuroimmunol; 2007 Oct; 190(1-2):112-20. PubMed ID: 17919740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis.
    Begolka WS; Vanderlugt CL; Rahbe SM; Miller SD
    J Immunol; 1998 Oct; 161(8):4437-46. PubMed ID: 9780223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of natalizumab on the innate and adaptive immune system in the central nervous system.
    Stüve O
    J Neurol Sci; 2008 Nov; 274(1-2):39-41. PubMed ID: 18474372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibody to a human salivary gland adenocarcinoma cell line: augmentation of antibody-dependent cell-mediated cytotoxicity activity by streptococcal preparation OK-432 in human salivary gland adenocarcinoma-bearing nude mice given the antibody.
    Kaji R; Yoshida H; Yanagawa T; Sato M
    J Biol Response Mod; 1989 Oct; 8(5):488-500. PubMed ID: 2552025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody-dependent cellular cytotoxicity in primary immunodeficiency diseases and with normal leukocyte subpopulations. Importance of the type of target.
    Sanal SO; Buckley RH
    J Clin Invest; 1978 Jan; 61(1):1-10. PubMed ID: 618906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphocyte phenotypes in the multiple sclerosis lesion--what do they mean?
    Zweiman B; Lisak RP
    Ann Neurol; 1986 Jun; 19(6):588-9. PubMed ID: 2942098
    [No Abstract]   [Full Text] [Related]  

  • 16. Cell-mediated hypersensitivity and disease activity in multiple sclerosis.
    Sheremata W; Cosgrove JB; Robb P
    Trans Am Neurol Assoc; 1973; 98():306-9. PubMed ID: 4784962
    [No Abstract]   [Full Text] [Related]  

  • 17. The best basic science paper in multiple sclerosis in 2014: important role for the choroid plexus in the central nervous system entry of leukocytes.
    Kooij G; de Vries HE
    Mult Scler; 2015 Apr; 21(4):372-3. PubMed ID: 25716882
    [No Abstract]   [Full Text] [Related]  

  • 18. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation.
    Meinl E; Krumbholz M; Hohlfeld R
    Ann Neurol; 2006 Jun; 59(6):880-92. PubMed ID: 16718690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentalization of inflammation in the CNS: a major mechanism driving progressive multiple sclerosis.
    Meinl E; Krumbholz M; Derfuss T; Junker A; Hohlfeld R
    J Neurol Sci; 2008 Nov; 274(1-2):42-4. PubMed ID: 18715571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody-dependent cell-mediated cytotoxicity of mononuclear cells against Langerhans islets of Wistar rats in normal man and in patients at diabetes risk.
    Köhler E; Knospe S; Woltanski G; Maciejewski R; Salzsieder C; Rjasanowski I; Strese J; Michaelis D
    Biomed Biochim Acta; 1984; 43(5):627-33. PubMed ID: 6383366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.