These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 553574)

  • 1. Selective activation of field CA1-CA2 by perforant neurons discharging in response to hippocampal efferent volleys.
    Bartesaghi R; Gessi T; Sperti L; Volta F
    Boll Soc Ital Biol Sper; 1979 Dec; 55(24):2568-74. PubMed ID: 553574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
    Bartesaghi R; Gessi T
    Hippocampus; 2004; 14(8):948-63. PubMed ID: 15390176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals.
    Bartesaghi R; Migliore M; Gessi T
    Neuroscience; 2006 Sep; 142(1):247-65. PubMed ID: 16844310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field potentials evoked in the subiculum following postsynaptic discharge of hippocampal pyramidal neurons.
    Bartesaghi R; Gessi T; Volta F
    Boll Soc Ital Biol Sper; 1979 Dec; 55(24):2561-7. PubMed ID: 553573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dorso-ventral distribution of evoked responses in the entorhinal area and dentate gyrus by impulses conducted in fibers of the dorsal psalterium].
    Bartesaghi R; Gessi T; Sperti L
    Boll Soc Ital Biol Sper; 1983 May; 59(5):710-6. PubMed ID: 6882570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic activation of the medial entorhinal cortex by presubicular commissural projections.
    Bartesaghi R; Di Maio V; Gessi T
    J Comp Neurol; 2005 Jul; 487(3):283-99. PubMed ID: 15892102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of early isolation on signal transfer in the entorhinal cortex-dentate-hippocampal system.
    Bartesaghi R; Raffi M; Ciani E
    Neuroscience; 2006 Feb; 137(3):875-90. PubMed ID: 16325342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat.
    Zheng F; Khanna S
    Brain Res Bull; 2008 Dec; 77(6):374-81. PubMed ID: 18852032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of early isolation on the synaptic function in the dentate gyrus and field CA1 of the guinea pig.
    Bartesaghi R
    Hippocampus; 2004; 14(4):482-98. PubMed ID: 15224984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of pyramidal neurons by intrinsic longitudinal connections in the hippocampus.
    Bartesaghi R; Gessi T; Sperti L
    Boll Soc Ital Biol Sper; 1979 Dec; 55(24):2555-60. PubMed ID: 553572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input-output relations in the entorhinal-hippocampal-entorhinal loop: entorhinal cortex and dentate gyrus.
    Bartesaghi R; Gessi T; Migliore M
    Hippocampus; 1995; 5(5):440-51. PubMed ID: 8773256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term potentiation and long-term depression induced by local application of ATP to hippocampal CA1 neurons of the guinea pig.
    Yamazaki Y; Kaneko K; Fujii S; Kato H; Ito K
    Hippocampus; 2003; 13(1):81-92. PubMed ID: 12625460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological analysis of the hippocampal projections to the entorhinal area.
    Bartesaghi R; Gessi T; Sperti L
    Neuroscience; 1989; 30(1):51-62. PubMed ID: 2747915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-lamellar propagation of entorhinal influences in the hippocampal formation: multiple electrode recordings in the isolated guinea pig brain in vitro.
    Paré D; Llinás R
    Hippocampus; 1994 Aug; 4(4):403-9. PubMed ID: 7874232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus.
    Uva L; de Curtis M
    Neuroscience; 2005; 130(1):249-58. PubMed ID: 15561441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interlamellar transfer of impulses in the hippocampal formation.
    Bartesaghi R; Gessi T; Sperti L
    Exp Neurol; 1983 Dec; 82(3):550-67. PubMed ID: 6653710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative characteristics of the direct influences of the perforant pathway on neurons in hippocampal fields CA1 and CA3 in vitro].
    Bragin AG; Otmakhov NA
    Neirofiziologiia; 1979; 11(4):303-10. PubMed ID: 471111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective blockade of Ca2+ permeable AMPA receptors in CA1 area of rat hippocampus.
    Buldakova SL; Kim KK; Tikhonov DB; Magazanik LG
    Neuroscience; 2007 Jan; 144(1):88-99. PubMed ID: 17097234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.