These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5538219)

  • 1. [Na and Cl serum concentration of the chilean frog Calyptocephalella gayi (Dum. et Bibr;, 1841): influence of the external bath (author's transl)].
    Salibian A
    Arch Biol Med Exp; 1970; 7(2):44-5. PubMed ID: 5538219
    [No Abstract]   [Full Text] [Related]  

  • 2. The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium against sodium and of bicarbonate against chloride.
    García Romeu F; Salibián A; Pezzani-Hernádez S
    J Gen Physiol; 1969 Jun; 53(6):816-35. PubMed ID: 5822161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Cl - and other anions in active Na + transport in isolated frog skin.
    Huf EG
    Acta Physiol Scand; 1972 Mar; 84(3):366-81. PubMed ID: 4623040
    [No Abstract]   [Full Text] [Related]  

  • 4. Modeling warming predicts a physiological threshold for the extinction of the living fossil frog Calyptocephalella gayi.
    Vidal MA; Novoa-Muñoz F; Werner E; Torres C; Nova R
    J Therm Biol; 2017 Oct; 69():110-117. PubMed ID: 29037370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Stages of normal development of Calyptocephalella gayi (the Chilean frog)].
    Jorquera B; Izquierdo L
    Biologica (Santiago); 1964 Jul; 36():43-53. PubMed ID: 5827177
    [No Abstract]   [Full Text] [Related]  

  • 6. Acetylcholine produces contractions mediated by the cyclooxygenase pathway in arterial vessels in the Chilean frog (Calyptocephalella gayi).
    Moraga FA; Urriola-Urriola N
    Braz J Biol; 2017 Nov; 77(4):781-786. PubMed ID: 28562775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The importance of knowing C1' concentration and Na+: C1' ratio in the serum in the practical diagnosis of simple and mixed acid-base balance disturbances. Evaluation by computer (author's transl)].
    Kazda A; Hendl J; Masek K
    Cas Lek Cesk; 1977 Sep; 116(36):1118-24. PubMed ID: 912728
    [No Abstract]   [Full Text] [Related]  

  • 8. Sodium and chloride transport in tadpoles of the bullfrog Rana catesbeiana.
    Alvarado RH; Moody A
    Am J Physiol; 1970 May; 218(5):1510-6. PubMed ID: 5438281
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracellular Cl concentration in frog ventricle as a function of the extracellular Na and Cl concentration.
    Verdonck F; De Clercq D; Carmeliet E
    Arch Int Physiol Biochim; 1965 Mar; 73(2):381-2. PubMed ID: 4158108
    [No Abstract]   [Full Text] [Related]  

  • 10. Dependence of sodium and chloride transports on chloride concentration in isolated frog skin.
    Fischbarg J; Zadunaisky JA; De Fisch FW
    Am J Physiol; 1967 Oct; 213(4):963-8. PubMed ID: 4228047
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrolyte distribution and active salt uptake in frog skin.
    HUF EG; WILLS JP; ARRIGHI MF
    J Gen Physiol; 1955 Jul; 38(6):867-88. PubMed ID: 13242768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt adaptation in Bufo bufo.
    Ferreira HG; Jesus CH
    J Physiol; 1973 Feb; 228(3):583-600. PubMed ID: 4633911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfatide content and (Na+ + K+)-ATPase activity of skin and gill during larval development of the Chilean frog, Calyptocephalella caudiverbera.
    Gonzalez M; Morales M; Zambrano F
    J Membr Biol; 1979 Dec; 51(3-4):347-59. PubMed ID: 43899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride flux via a shunt pathway in frog skin: apparent exchange diffusion.
    Mandel LJ; Curran PF
    Biochim Biophys Acta; 1972 Sep; 282(1):258-64. PubMed ID: 4341788
    [No Abstract]   [Full Text] [Related]  

  • 15. Active transport of sodium and chloride by the isolated skin of the South American frog Leptodactylus ocelatus.
    ZADUNAISKY JA; CANDIA OA
    Nature; 1962 Sep; 195():1004. PubMed ID: 14009543
    [No Abstract]   [Full Text] [Related]  

  • 16. [The water-, acid-base- and electrolyte-metabolism after total heart replacement by a blood pump (author's transl)].
    Clevert HD; Keilbach H; Kleine HO; Krautzberger W; Unger V; Weidemann H; Bücherl ES
    Langenbecks Arch Chir; 1974 May; 335(1):239-50. PubMed ID: 4837044
    [No Abstract]   [Full Text] [Related]  

  • 17. CHANGES IN THE MEMBRANE PERMEABILITY OF FROG'S SARTORIUS MUSCLE FIBERS IN CA-FREE EDTA SOLUTION.
    KIMIZUKA H; KOKETSU K
    J Gen Physiol; 1963 Nov; 47(2):379-92. PubMed ID: 14080821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Autoradiographic localization of Cl- and Na+ ions in the chloride cells of sea water adapted eel (Anguilla anguilla L.) gills (author's transl)].
    Masoni A; Garcia-Romeu F
    Z Zellforsch Mikrosk Anat; 1973 Aug; 141(4):575-8. PubMed ID: 4795839
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo ionic exchange through the skin of the South American frog, Leptodactylus ocellatus.
    Salibián A; Pezzani-Hernández S; García Romeu F
    Comp Biochem Physiol; 1968 Apr; 25(1):311-7. PubMed ID: 5657206
    [No Abstract]   [Full Text] [Related]  

  • 20. THE ORIGIN OF THE SHORT-CIRCUIT CURRENT IN THE ISOLATED SKIN OF THE SOUTH AMERICAN FROG LEPTODACTYLUS OCELLATUS.
    ZADUNAISKY JA; CANDIA OA; CHIARANDINI DJ
    J Gen Physiol; 1963 Nov; 47(2):393-402. PubMed ID: 14080822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.