These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
60 related articles for article (PubMed ID: 5538998)
1. The potential distribution and the short-circuiting factor in the sucrose gap. Jirounek P; Straub RW Biophys J; 1971 Jan; 11(1):1-10. PubMed ID: 5538998 [TBL] [Abstract][Full Text] [Related]
2. The correction factors for sucrose gap measurements and their practical applications. Jirounek P; Jones GJ; Burckhardt CW; Straub RW Biophys J; 1981 Jan; 33(1):107-19. PubMed ID: 6974012 [TBL] [Abstract][Full Text] [Related]
3. Voltage clamp of cardiac muscle. A theoretical analysis of early currents in the single sucrose gap. Kootsey JM; Johnson EA Biophys J; 1972 Nov; 12(11):1496-508. PubMed ID: 4642223 [TBL] [Abstract][Full Text] [Related]
4. Reexamination of the double sucrose gap technique for the study of lobster giant axons. Theory and experiments. Pooler JP; Valenzeno DP Biophys J; 1983 Nov; 44(2):261-9. PubMed ID: 6652217 [TBL] [Abstract][Full Text] [Related]
5. Voltage clamp simulations for multifiber bundles in a double sucrose gap: radial vs. longitudinal resistance effects. Haas HG; Brommundt G; Solchenbach K Gen Physiol Biophys; 1987 Feb; 6(1):3-18. PubMed ID: 3596224 [TBL] [Abstract][Full Text] [Related]
6. Reduction of the sucrose-saline interdiffusion in the sucrose gap technique by controlled compression of the extracellular space in myocardial preparations. Cleemann L; Suenson M Acta Physiol Scand; 1984 Mar; 120(3):417-27. PubMed ID: 6611015 [TBL] [Abstract][Full Text] [Related]
7. Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry. Clark JW; Greco EC; Harman TL CRC Crit Rev Bioeng; 1978 Nov; 3(1):1-22. PubMed ID: 310379 [TBL] [Abstract][Full Text] [Related]
8. [Study of the electrical properties of retinal horizontal cell syncytia by the technic of uniform polarization]. Shura-Bura TM; Trifonov IuA Biofizika; 1980; 25(1):159-63. PubMed ID: 7370317 [TBL] [Abstract][Full Text] [Related]
9. Passive membrane potentials: a generalization of the theory of electrotonus. Hellerstein D Biophys J; 1968 Mar; 8(3):358-79. PubMed ID: 5759920 [TBL] [Abstract][Full Text] [Related]
10. Origin of axon membrane hyperpolarization under sucrose-gap. Blaustein MP; Goldman DE Biophys J; 1966 Jul; 6(4):453-70. PubMed ID: 19210970 [TBL] [Abstract][Full Text] [Related]
11. An assessment of the double sucrose-gap voltage clamp technique as applied to frog atrial muscle. Tarr M; Trank JW Biophys J; 1974 Sep; 14(9):627-43. PubMed ID: 4547136 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of dual whole-cell voltage-clamp determination of gap junctional conductance. Van Rijen HV; Wilders R; Van Ginneken AC; Jongsma HJ Pflugers Arch; 1998 Jun; 436(1):141-51. PubMed ID: 9560458 [TBL] [Abstract][Full Text] [Related]
13. Voltage clamp simulations for multifiber bundles in a double sucrose gap: cable complications. Solchenbach K; Haas HG; Brommundt G Gen Physiol Biophys; 1986 Oct; 5(5):449-71. PubMed ID: 2433182 [TBL] [Abstract][Full Text] [Related]
14. Analysis of lumped and distributed elements models of cut muscle fibers in vaseline or sucrose gap preparations. Andrietti F; Bernardini G; Peres A Biophys J; 1984 Nov; 46(5):625-30. PubMed ID: 6498275 [TBL] [Abstract][Full Text] [Related]
15. Membrane potential and input resistance are ambiguous measures of sealing of transected cable-like structures. Krause TL; Magarshak Y; Fishman HM; Bittner GD Biophys J; 1995 Mar; 68(3):795-9. PubMed ID: 7756546 [TBL] [Abstract][Full Text] [Related]
16. Voltage clamp with double sucrose gap technique. External series resistance compensation. Poindessault JP; Duval A; Léoty C Biophys J; 1976 Feb; 16(2 Pt 1):105-20. PubMed ID: 1247641 [TBL] [Abstract][Full Text] [Related]
17. Direct measurement of potential difference across the human red blood cell membrane. Jay AW; Burton AC Biophys J; 1969 Feb; 9(2):115-21. PubMed ID: 5764221 [TBL] [Abstract][Full Text] [Related]
18. Propagation through electrically coupled cells. Effects of a resistive barrier. Joyner RW; Veenstra R; Rawling D; Chorro A Biophys J; 1984 May; 45(5):1017-25. PubMed ID: 6733238 [TBL] [Abstract][Full Text] [Related]
19. Generalized cable theory for neurons in complex and heterogeneous media. Bédard C; Destexhe A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022709. PubMed ID: 24032866 [TBL] [Abstract][Full Text] [Related]
20. On the relation between axial resistance and conductivity in linear cable models. Kleinpenning PH; Van Oosterom A Math Biosci; 1990 Apr; 99(1):1-10. PubMed ID: 2134509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]