These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Voltage clamp limitations of dual whole-cell gap junction current and voltage recordings. I. Conductance measurements. Veenstra RD Biophys J; 2001 May; 80(5):2231-47. PubMed ID: 11325726 [TBL] [Abstract][Full Text] [Related]
26. A theoretical study on the sucrose gap technique as applied to multicellular muscle preparations. III. Methodical errors in the determination of inward currents. Lammel E Biophys J; 1983 May; 42(2):159-70. PubMed ID: 6860773 [TBL] [Abstract][Full Text] [Related]
27. [On the biophysics of excitable membranes. 2. Summation of local potentials on Ranvier's node]. Schwarz FP Acta Biol Med Ger; 1968; 20(5):613-24. PubMed ID: 5721186 [No Abstract] [Full Text] [Related]
28. A reconstruction of charge movement during the action potential in frog skeletal muscle. Huang CL; Peachey LD Biophys J; 1992 May; 61(5):1133-46. PubMed ID: 1600077 [TBL] [Abstract][Full Text] [Related]
29. "Sucrose gap" technique for measurement of focal gastric mucosal potential differences in the rat. Mersereau WA; Hinchey EJ Gastroenterology; 1978 Dec; 75(6):1120-3. PubMed ID: 710864 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms involved in generation of oscillatory afterpotentials in myocardium. Nilius B; Albitz R; Linde T Biomed Biochim Acta; 1988; 47(2):163-71. PubMed ID: 3178782 [TBL] [Abstract][Full Text] [Related]
31. Modular double sucrose gap apparatus for improved recording of compound action potentials from rat and mouse spinal cord white matter preparations. Velumian AA; Wan Y; Samoilova M; Fehlings MG J Neurosci Methods; 2010 Mar; 187(1):33-40. PubMed ID: 20034518 [TBL] [Abstract][Full Text] [Related]
32. Sucrose gap longevity is markedly improved by addition of lanthanum to the sucrose. Pooler JP Experientia; 1983 Apr; 39(4):368-9. PubMed ID: 6832310 [TBL] [Abstract][Full Text] [Related]
34. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Stys PK; Sontheimer H; Ransom BR; Waxman SG Proc Natl Acad Sci U S A; 1993 Aug; 90(15):6976-80. PubMed ID: 8394004 [TBL] [Abstract][Full Text] [Related]
35. Role of potassium in the phosphate efflux from mammalian nerve fibers. Jirounek P; Rouiller M; Ferrero JD; Straub RW J Membr Biol; 1980 Jan; 52(1):75-82. PubMed ID: 7359577 [No Abstract] [Full Text] [Related]
36. The correction factors for sucrose gap measurements and their practical applications. Jirounek P; Jones GJ; Burckhardt CW; Straub RW Biophys J; 1981 Jan; 33(1):107-19. PubMed ID: 6974012 [TBL] [Abstract][Full Text] [Related]
37. Reexamination of the double sucrose gap technique for the study of lobster giant axons. Theory and experiments. Pooler JP; Valenzeno DP Biophys J; 1983 Nov; 44(2):261-9. PubMed ID: 6652217 [TBL] [Abstract][Full Text] [Related]
38. Analysis of lumped and distributed elements models of cut muscle fibers in vaseline or sucrose gap preparations. Andrietti F; Bernardini G; Peres A Biophys J; 1984 Nov; 46(5):625-30. PubMed ID: 6498275 [TBL] [Abstract][Full Text] [Related]
39. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis. Nakajima S; Bastian J J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637 [TBL] [Abstract][Full Text] [Related]
40. Some effects of prolonged polarization on membrane currents in bullfrog atrial muscle. Maughan DW J Membr Biol; 1973; 11(4):331-52. PubMed ID: 4544319 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]