These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 5539001)

  • 1. Kinetic theory model for ion movement through biological membranes. I. Field-dependent conductances in the presence of solution symmetry.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):75-90. PubMed ID: 5539001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):91-7. PubMed ID: 5539002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of time-dependent membrane conductance. The nonrole of classical ion-membrane molecule interactions.
    Mackey MC; McNeel ML
    Biophys J; 1973 Aug; 13(8):733-46. PubMed ID: 4726876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to relate steady-state ionic currents, conductances, and membrane potential in ion exchange membranes with unknown thermodynamic properties.
    Sandblom JP
    Biophys J; 1967 May; 7(3):243-65. PubMed ID: 6035123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):441-66. PubMed ID: 263687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of ionic currents across a model membrane channel using Brownian dynamics.
    Chung SH; Hoyles M; Allen T; Kuyucak S
    Biophys J; 1998 Aug; 75(2):793-809. PubMed ID: 9675181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relations between chord and slope conductances and equivalent electromotive forces.
    Thompson SM
    Am J Physiol; 1986 Feb; 250(2 Pt 1):C333-9. PubMed ID: 3953785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium voltage fluctuations in biological membranes. I. General framework of charge transport in discrete systems and related voltage noise.
    Frehland E; Solleder P
    Biophys Chem; 1986 Dec; 25(2):135-45. PubMed ID: 3814750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The steady-state properties of an ion exchange membrane with mobile sites.
    Conti F; Eisenman G
    Biophys J; 1966 May; 6(3):227-46. PubMed ID: 5962278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion.
    Heckmann K; Lindemann B; Schnakenberg J
    Biophys J; 1972 Jun; 12(6):683-702. PubMed ID: 5029432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux, coupling, and selectivity in ionic channels of one conformation.
    Chen DP; Eisenberg RS
    Biophys J; 1993 Aug; 65(2):727-46. PubMed ID: 7693003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The excitable membrane. A physiochemical model.
    Offner FF
    Biophys J; 1972 Dec; 12(12):1583-629. PubMed ID: 4655662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Theory of hydrophobic ion adsorption in bilayer lipid membranes taking into account their lateral interaction and charge discreteness].
    Kozlov MM; Chernyĭ VV; Sokolov VS; Ermakov IuA; Markin VS
    Biofizika; 1983; 28(1):61-6. PubMed ID: 6830904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE NON-STEADY STATE MEMBRANE POTENTIAL OF ION EXCHANGERS WITH FIXED SITES.
    CONTI F; EISENMAN G
    Biophys J; 1965 Mar; 5(2):247-56. PubMed ID: 14268957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes.
    Krasne S
    Biophys J; 1980 Jun; 30(3):415-39. PubMed ID: 7260282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues.
    Helman SI; Thompson SM
    Am J Physiol; 1982 Dec; 243(6):F519-31. PubMed ID: 6293312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic model for selective permeation in ion channels.
    Wu J
    Biophys J; 1991 Jul; 60(1):238-51. PubMed ID: 1715765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.