These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effects of acoustic trauma on the cochlear potentials. Gans DP J Acoust Soc Am; 1983 Dec; 74(6):1742-6. PubMed ID: 6655132 [TBL] [Abstract][Full Text] [Related]
4. Role of the acoustical pressure polarity in the cochlear fatigue provoked by impulse noise. Legouix JP; Pierson A Scand Audiol Suppl; 1980 Aug; (Suppl 12):147-53. PubMed ID: 6939082 [No Abstract] [Full Text] [Related]
5. [Functional impairment of outer hair cells by noise and assessment by measuring distortion product emissions (DPOAE)]. Oeken J Laryngorhinootologie; 2000 Dec; 79(12):806-7. PubMed ID: 11199468 [No Abstract] [Full Text] [Related]
6. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig. Legouix JP; Joannès M Hear Res; 1984 Apr; 14(1):39-44. PubMed ID: 6746420 [TBL] [Abstract][Full Text] [Related]
7. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Patuzzi RB; Yates GK; Johnstone BM Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965 [TBL] [Abstract][Full Text] [Related]
8. [Relationship between cochlear fatigue and the asymmetrical non-linearity of microphonic responses in the guinea pig (author's transl)]. Legouix JP; Pierson A; Minot JF Ann Otolaryngol Chir Cervicofac; 1979 Dec; 96(12):821-6. PubMed ID: 533088 [TBL] [Abstract][Full Text] [Related]
9. [Physiological effects of destruction of the tip links of cochlear hair cells. Significance for noise-induced hearing loss]. Meyer J; Gummer AW HNO; 2000 May; 48(5):383-9. PubMed ID: 10872120 [TBL] [Abstract][Full Text] [Related]
10. Brainstem-evoked responses of guinea pigs exposed to high noise levels in utero. Cook RO; Konishi T; Salt AN; Hamm CW; Lebetkin EH; Koo J Dev Psychobiol; 1982 Mar; 15(2):95-104. PubMed ID: 7095284 [TBL] [Abstract][Full Text] [Related]
11. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential. Pierson MG; Møller AR Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136 [TBL] [Abstract][Full Text] [Related]
12. Effects of noise on the nervous system. Miller J; Nilsson R; Flock A; Canlon B Electroencephalogr Clin Neurophysiol Suppl; 1987; 39():364-78. PubMed ID: 3308418 [No Abstract] [Full Text] [Related]
13. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection. Canlon B Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645 [TBL] [Abstract][Full Text] [Related]
15. Some dualistic properties of the cochlear microphonic. Pierson M; Møller A Hear Res; 1980 Mar; 2(2):135-49. PubMed ID: 7364669 [TBL] [Abstract][Full Text] [Related]
16. Use of animal models in the study of the effects of noise on hearing. Dancer AL Occup Med; 1995; 10(3):535-44. PubMed ID: 8578417 [No Abstract] [Full Text] [Related]
17. Susceptibility to impulse noise trauma in different species: guinea pig, rat and mouse. Duan M; Laurell G; Qiu J; Borg E Acta Otolaryngol; 2008 Mar; 128(3):277-83. PubMed ID: 17917838 [TBL] [Abstract][Full Text] [Related]
18. Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma. Patuzzi R Audiol Neurootol; 2002; 7(1):17-20. PubMed ID: 11914520 [TBL] [Abstract][Full Text] [Related]