BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 5539338)

  • 1. Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic rticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.
    Weber A
    J Gen Physiol; 1971 Jan; 57(1):50-63. PubMed ID: 5539338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mechanisms ofthe calcium transport system of ramented rabbit sarcoplasmic rticulum. II. Inhibition of outflux in calcium-free media.
    Weber A
    J Gen Physiol; 1971 Jan; 57(1):64-70. PubMed ID: 5539339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits.
    Suko J
    J Physiol; 1973 Feb; 228(3):563-82. PubMed ID: 4267211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometries of calcium and strontium transport coupled to ATP and acetyl phosphate hydrolysis by skeletal sarcoplasmic reticulum.
    Berman MC; King SB
    Biochim Biophys Acta; 1990 Nov; 1029(2):235-40. PubMed ID: 2245209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum.
    Mermier P; Hasselbach W
    Eur J Biochem; 1976 Oct; 69(1):79-86. PubMed ID: 136346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of the action of caffeine on sarcoplasmic reticulum.
    Weber A
    J Gen Physiol; 1968 Nov; 52(5):760-72. PubMed ID: 4176939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat production and proton release during the ATP-driven Ca uptake by fragmented sarcoplasmic reticulum from bullfrog and rabbit skeletal muscle.
    Kodama T; Kurebayashi N; Ogawa Y
    J Biochem; 1980 Nov; 88(5):1259-65. PubMed ID: 6257660
    [No Abstract]   [Full Text] [Related]  

  • 8. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Ratio for Ca(2+) Transport by Calcium Oxalate Precipitation.
    Sehgal P; Olesen C; Møller JV
    Methods Mol Biol; 2016; 1377():157-60. PubMed ID: 26695030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tetrandrine on calcium transport, protein fluorescences and membrane fluidity of sarcoplasmic reticulum.
    Chen LY; Chen X; Tian XL; Yu XH
    Br J Pharmacol; 2000 Oct; 131(3):530-6. PubMed ID: 11015304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle.
    Carvalho AP; Leo B
    J Gen Physiol; 1967 May; 50(5):1327-52. PubMed ID: 6033589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Calcium release from vesicles of heavy sarcoplasmic reticulum of rabbit skeletal muscles].
    Smirnova MB; Rubtsov AM; Boldyrev AA
    Ukr Biokhim Zh (1978); 1989; 61(1):57-64. PubMed ID: 2472698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuous spectrophotometric assay for simultaneous measurement of calcium uptake and ATP hydrolysis in sarcoplasmic reticulum.
    Karon BS; Nissen ER; Voss J; Thomas DD
    Anal Biochem; 1995 May; 227(2):328-33. PubMed ID: 7573954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of calcium ionophores on fragmented sarcoplasmic reticulum.
    Scarpa A; Baldassare J; Inesi G
    J Gen Physiol; 1972 Dec; 60(6):735-49. PubMed ID: 4264855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the uptake of calcium by canine myocardial sarcoplasmic reticulum.
    Baird TJ; Binnion PF
    Ir J Med Sci; 1969 Dec; 8(12):585-93. PubMed ID: 5374227
    [No Abstract]   [Full Text] [Related]  

  • 17. Excitation-contraction coupling in heart. V. Contribution of mitochondria and sarcoplasmic reticulum in the regulation of calcium concentration in the heart.
    Dhalla NS; McNamara DB; Sulakhe PV
    Cardiology; 1970; 55(3):178-91. PubMed ID: 4254034
    [No Abstract]   [Full Text] [Related]  

  • 18. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 20. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results.
    Feher JJ; Briggs FN
    Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.