These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5539640)

  • 1. Production of ultrastructural membrane lesions by the fifth component of complement.
    Polley MJ; Müller-Eberhard HJ; Feldman JD
    J Exp Med; 1971 Jan; 133(1):53-62. PubMed ID: 5539640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of the membrane attack mechanism of complement.
    Kolb WP; Haxby JA; Arroyave CM; Müller-Eberhard HJ
    J Exp Med; 1972 Mar; 135(3):549-66. PubMed ID: 5058233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of complement-induced cell lysis. Demonstration of a three-step mechanism of EAC1-8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes.
    Valet G; Opferkuch W
    J Immunol; 1975 Oct; 115(4):1028-33. PubMed ID: 809505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes.
    Hammer CH; Nicholson A; Mayer MM
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):5076-80. PubMed ID: 1061092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lytic activity of C5-9 complexes for erythrocytes from the species other than sheep: C9 rather than C8-dependent variation in lytic activity.
    Yamamoto KI
    J Immunol; 1977 Oct; 119(4):1482-5. PubMed ID: 894048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reaction mechanism of human C5 in immune hemolysis.
    Cooper NR; Müller-Eberhard HJ
    J Exp Med; 1970 Oct; 132(4):775-93. PubMed ID: 5508377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complement-induced ultrastructural membrane lesions: requirement for terminal components.
    Packman CH; Rosenfeld SI; Weed RI; Leddy JP
    J Immunol; 1976 Nov; 117(5 Pt.2):1883-9. PubMed ID: 993584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune hemolysis and the functional properties of the second (C2) and fourth (C4) components of complement. I. Functional differences among C4 sites on cell surfaces.
    Borsos T; Rapp HJ; Colten HR
    J Immunol; 1970 Dec; 105(6):1439-46. PubMed ID: 4991793
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell.
    Hänsch GM; Hammer CH; Mayer MM; Shin ML
    J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The attack phase of human complement: differentiation between membrane binding and complex formation by the detection of neoantigen expression in situ. A morphometric immunoferritin study.
    Balkarowa-Ständer J; Rother U; Rauterberg EW
    J Immunol; 1981 Sep; 127(3):1089-93. PubMed ID: 7264298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysis of erythrocytes by complement in the absence of antibody.
    Götze O; Müller-Eberhard HJ
    J Exp Med; 1970 Nov; 132(5):898-915. PubMed ID: 5470509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modulation of classical pathway activation: C2 and C3 convertase formation and regulation on sheep, guinea pig, and human erythrocytes.
    Brown EJ; Ramsey J; Hammer CH; Frank MM
    J Immunol; 1983 Jul; 131(1):403-8. PubMed ID: 6602833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypsin-activated complex of human factor B with cobra venom factor (CVF), cleaving C3 and C5 and generating a lytic factor for unsensitized guinea pig erythrocytes. I. Generation of the activated complex.
    Miyama A; Kato T; Horai S; Yokoo J; Kashiba S
    Biken J; 1975 Dec; 18(4):193-204. PubMed ID: 1218074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent and consecutive action of C5, C6 and C7 in immune hemolysis. II. Formation and decay of the intermediate complexes EAC1-5 and EAC1-6.
    Hadding U; Bitter-Suermann D; Wellensiek HJ
    Immunochemistry; 1970 Dec; 7(12):967-76. PubMed ID: 5503628
    [No Abstract]   [Full Text] [Related]  

  • 15. An anticomplementary agent, K-76 monocarboxylic acid: its site and mechanism of inhibition of the complement activation cascade.
    Hong K; Kinoshita T; Miyazaki W; Izawa T; Inoue K
    J Immunol; 1979 Jun; 122(6):2418-23. PubMed ID: 448130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b.
    Rosenfeld SI; Jenkins DE; Leddy JP
    J Immunol; 1985 Jan; 134(1):506-11. PubMed ID: 3964820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the C9b domain in the binding of C9 molecules to EAC1-8 defined by monoclonal antibodies to C9.
    Yoden A; Moriyama T; Inoue K; Inai S
    J Immunol; 1988 Apr; 140(7):2317-21. PubMed ID: 3351301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemolysis of normal human erythrocytes by autologous serum complement.
    Kitamura H; Nagano A; Kitano E
    Int Arch Allergy Immunol; 1993; 100(3):209-14. PubMed ID: 8453307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complement lysis: evidence for an amphiphilic nature of the terminal membrane C5b-9 complex of human complement.
    Bhakdi S; Bjerrum OJ; Bhakdi-Lehnen B; Tranum-Jensen J
    J Immunol; 1978 Dec; 121(6):2526-32. PubMed ID: 569173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of a human serum protein ("factor E") which enhances cobra venom factor-induced indirect lysis. Identification with the fifth component of complement.
    Lynen R; Vogt W; Schmidt G; Dieminger L
    Z Immunitatsforsch Exp Klin Immunol; 1976 Apr; 151(2):105-16. PubMed ID: 134530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.