These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pathway of L-sorbose metabolism in Aerobacter aerogenes. Kelker NE; Simkins RA; Anderson RL J Biol Chem; 1972 Mar; 247(5):1479-83. PubMed ID: 4401059 [No Abstract] [Full Text] [Related]
3. Metabolism of D-mannose in Aerobacter aerogenes: evidence for a cyclic pathway. Kamel MY; Anderson RL J Bacteriol; 1966 Dec; 92(6):1689-97. PubMed ID: 4289357 [TBL] [Abstract][Full Text] [Related]
4. Catabolism of fructose and mannitol in Clostridium thermocellum: presence of phosphoenolpyruvate: fructose phosphotransferase, fructose 1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol 1-phosphate dehydrogenase in cell extracts. Patni NJ; Alexander JK J Bacteriol; 1971 Jan; 105(1):226-31. PubMed ID: 5541009 [TBL] [Abstract][Full Text] [Related]
5. Regulation of D-xylose and D-arabitol catabolism by Aerobacter aerogenes. Wilson BL; Mortlock RP J Bacteriol; 1973 Mar; 113(3):1404-11. PubMed ID: 4734863 [TBL] [Abstract][Full Text] [Related]
6. Regulation of pentitol metabolism by Aerobacter aerogenes. I. Coordinate control of ribitol dehydrogenase and D-ribulokinase activities. Bisson TM; Mortlock RP J Bacteriol; 1968 Mar; 95(3):925-31. PubMed ID: 5643065 [TBL] [Abstract][Full Text] [Related]
7. Regulation of pentitol metabolism by aerobacter aerogenes. II. Induction of the ribitol pathway. Bisson TM; Oliver EJ; Mortlock RP J Bacteriol; 1968 Mar; 95(3):932-6. PubMed ID: 5643066 [TBL] [Abstract][Full Text] [Related]
13. Evidence that the inducible phosphoenolpyruvate:D-fructose 1-phosphotransferase system of Aerobacter aerogenes does not require "HPr". Walter RW; Anderson RL Biochem Biophys Res Commun; 1973 May; 52(1):93-7. PubMed ID: 4712203 [No Abstract] [Full Text] [Related]
14. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. Johansen L; Bryn K; Stormer FC J Bacteriol; 1975 Sep; 123(3):1124-30. PubMed ID: 239921 [TBL] [Abstract][Full Text] [Related]
15. Evidence for vectorial phosphorylation of D-fructose by intact cells of Aerobacter aerogenes. Kelker NE; Anderson RL J Bacteriol; 1972 Dec; 112(3):1441-3. PubMed ID: 4640508 [TBL] [Abstract][Full Text] [Related]
16. Purification and kinetic characterization of a monovalent cation-activated glycerol dehydrogenase from Aerobacter aerogenes. McGregor WG; Phillips J; Suelter CH J Biol Chem; 1974 May; 249(10):3132-9. PubMed ID: 4364415 [No Abstract] [Full Text] [Related]
17. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. Ruch FE; Lin EC J Bacteriol; 1975 Oct; 124(1):348-52. PubMed ID: 170247 [TBL] [Abstract][Full Text] [Related]
18. Growth of Aerobacter aerogenes on D-arabinose: origin of the enzyme activities. Oliver EJ; Mortlock RP J Bacteriol; 1971 Oct; 108(1):287-92. PubMed ID: 5122807 [TBL] [Abstract][Full Text] [Related]
19. Cellobiose metabolism in Aerobacter aerogenes. II. Phosphorylation of cellobiose with adenosine 5'-triphosphate by a -glucoside kinase. Palmer RE; Anderson RL J Biol Chem; 1972 Jun; 247(11):3415-9. PubMed ID: 5030625 [No Abstract] [Full Text] [Related]
20. Barbitone induced oscillatory responses in Klebsiella (Aerobacter) aerogenes. Dean AC; Moss DA Biochem Pharmacol; 1971 Jan; 20(1):1-13. PubMed ID: 5570635 [No Abstract] [Full Text] [Related] [Next] [New Search]