These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 5542810)

  • 21. Formation and retrieval of inhibitory avoidance memory: differential roles of glutamate receptors in the amygdala and medial prefrontal cortex.
    Liang KC; Hu SJ; Chang SC
    Chin J Physiol; 1996; 39(3):155-66. PubMed ID: 8955562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task.
    Sloan HL; Good M; Dunnett SB
    Behav Brain Res; 2006 Jul; 171(1):116-26. PubMed ID: 16677723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].
    Preobrazhenskaia LA; Ioffe ME; Mats VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(3):409-19. PubMed ID: 15326957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of novelty on activity of lateral and medial prefrontal neurons.
    Matsumoto M; Matsumoto K; Tanaka K
    Neurosci Res; 2007 Feb; 57(2):268-76. PubMed ID: 17137664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.
    Eddy MC; Todd TP; Bouton ME; Green JT
    Neurobiol Learn Mem; 2016 Feb; 128():33-9. PubMed ID: 26723281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention of symmetrical go--no go avoidance differentiation after prefrontal lesions in dogs.
    Kowalska D; Dabrowska J; Zieliński K
    Bull Acad Pol Sci Biol; 1975; 23(7):487-94. PubMed ID: 1192254
    [No Abstract]   [Full Text] [Related]  

  • 27. Rewards and Cognitive Control in the Human Prefrontal Cortex.
    Duverne S; Koechlin E
    Cereb Cortex; 2017 Oct; 27(10):5024-5039. PubMed ID: 28922835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex.
    Smith EH; Banks GP; Mikell CB; Cash SS; Patel SR; Eskandar EN; Sheth SA
    J Neurosci; 2015 Dec; 35(48):15827-36. PubMed ID: 26631465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Behavioural and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat.
    Carter CJ; Pycock CJ
    Brain Res; 1980 Jun; 192(1):163-76. PubMed ID: 7189685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of the medial prefrontal cortex in food intake in dogs.
    Wolf-Jurewicz K
    Acta Physiol Pol; 1982; 33(4):393-401. PubMed ID: 6964027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of dopamine terminals in the medial prefrontal cortex increased the ratio of DOPAC to DA in tissue of the nucleus accumbens shell: role of stress.
    King D; Finlay JM
    Brain Res; 1997 Sep; 767(2):192-200. PubMed ID: 9367247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of medial prefrontal cortex and dorsal striatum lesions on retrieval processes in rats.
    Botreau F; El Massioui N; Chéruel F; Gisquet-Verrier P
    Neuroscience; 2004; 129(3):539-53. PubMed ID: 15541876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of dopamine depletions in the medial prefrontal cortex on active avoidance and escape in the rat.
    Sokolowski JD; McCullough LD; Salamone JD
    Brain Res; 1994 Jul; 651(1-2):293-9. PubMed ID: 7922578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociation in prefrontal cortex of affective and attentional shifts.
    Dias R; Robbins TW; Roberts AC
    Nature; 1996 Mar; 380(6569):69-72. PubMed ID: 8598908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medial prefrontal cortex lesions abolish contextual control of competing responses.
    Haddon JE; Killcross AS
    J Exp Anal Behav; 2005 Nov; 84(3):485-504. PubMed ID: 16596976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning.
    Koechlin E; Corrado G; Pietrini P; Grafman J
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7651-6. PubMed ID: 10852964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.
    Han X; Jing MY; Zhao TY; Wu N; Song R; Li J
    Metab Brain Dis; 2017 Oct; 32(5):1491-1502. PubMed ID: 28523568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frontal lobe and motivation of learned behavior.
    Gerbner M
    Acta Neurobiol Exp (Wars); 1972; 32(3):673-87. PubMed ID: 5051590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of mediodorsal thalamic nucleus afferents originating in the prefrontal association cortex of the dog.
    Stepniewska I; Kosmal A
    Acta Neurobiol Exp (Wars); 1986; 46(5-6):311-22. PubMed ID: 3565103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation of deficits on auditory tasks following partial prefrontal lesions in monkeys.
    Lawicka W; Mishkin M; Rosvold HE
    Acta Neurobiol Exp (Wars); 1975; 35(5-6):581-607. PubMed ID: 813496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.