These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 5544299)

  • 21. Physiological characteristics of rumen microbes and relation to diet and fermentation patterns.
    Hobson PN
    Proc Nutr Soc; 1972 Sep; 31(2):135-9. PubMed ID: 4628391
    [No Abstract]   [Full Text] [Related]  

  • 22. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.
    Li XZ; Gao QS; Yan CG; Choi SH; Shin JS; Song MK
    Anim Sci J; 2015 Aug; 86(8):755-64. PubMed ID: 25597643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of CCl4 on CH4 and volatile acid production in continuous cultures of rumen organisms and in a sheep rumen.
    Rufener WH; Wolin MJ
    Appl Microbiol; 1968 Dec; 16(12):1955-6. PubMed ID: 5749753
    [No Abstract]   [Full Text] [Related]  

  • 24. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.
    Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR
    J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z
    Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rumen fermentation in vitro as influenced by long chain fatty acids.
    Chalupa W; Rickabaugh B; Kronfeld DS; Sklan D
    J Dairy Sci; 1984 Jul; 67(7):1439-44. PubMed ID: 6747049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors influencing rumen fermentation: effect of hydrogen on formation of propionate.
    Schulman MD; Valentino D
    J Dairy Sci; 1976 Aug; 59(8):1444-51. PubMed ID: 956483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Papaya (Carica papaya) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation.
    Jafari S; Goh YM; Rajion MA; Jahromi MF; Ahmad YH; Ebrahimi M
    Anim Sci J; 2017 Feb; 88(2):267-276. PubMed ID: 27345820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissimilatory metabolism of nitrate by the rumen microbiota.
    Jones GA
    Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328
    [No Abstract]   [Full Text] [Related]  

  • 31. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants.
    Watanabe Y; Suzuki R; Koike S; Nagashima K; Mochizuki M; Forster RJ; Kobayashi Y
    J Dairy Sci; 2010 Nov; 93(11):5258-67. PubMed ID: 20965342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors affecting the transport of volatile fatty acids across rumen epithelium.
    Stevens CE; Stettler BK
    Am J Physiol; 1966 Feb; 210(2):365-72. PubMed ID: 5901475
    [No Abstract]   [Full Text] [Related]  

  • 33. Production within the rumen and removal from the blood-stream of volatile fatty acids in sheep given a diet deficient in cobalt.
    Marston HR; Allen SH; Smith RM
    Br J Nutr; 1972 Jan; 27(1):147-57. PubMed ID: 4501057
    [No Abstract]   [Full Text] [Related]  

  • 34. Influence of pH on fatty acid inhibition of methane production by mixed rumen bacteria.
    Demeyer D; Henderickx H; Van Nevel C
    Arch Int Physiol Biochim; 1967 Jun; 75(3):555-6. PubMed ID: 4167734
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of monensin on fermentation characteristics of the artificial rumen.
    Wallace RJ; Cheng KJ; Czerkawski JW
    Appl Environ Microbiol; 1980 Sep; 40(3):672-4. PubMed ID: 7425619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous measurements of the rates of production of acetic, propionic and butyric acids in the rumen of sheep on different diets and the correlation between production rates and concentrations of these acids in the rumen.
    Leng RA; Brett DJ
    Br J Nutr; 1966; 20(3):541-52. PubMed ID: 5923624
    [No Abstract]   [Full Text] [Related]  

  • 37. In vitro rumen fermentation of alfalfa hay. Carbon dioxide, methane, VFA and heat production.
    Hershberger TV; Hartsook EW
    J Anim Sci; 1970 Feb; 30(2):257-61. PubMed ID: 5462223
    [No Abstract]   [Full Text] [Related]  

  • 38. Utilization of salts of volatile fatty acids by growing sheep. IV. Effects of type of fermentation of the basal diet on the utilization of salts of volatile fatty acids for nitrogen retention and body gains.
    Orskov ER; Allem DM
    Br J Nutr; 1966; 20(3):519-32. PubMed ID: 5923623
    [No Abstract]   [Full Text] [Related]  

  • 39. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool.
    Hungate RE; Reichl J; Prins R
    Appl Microbiol; 1971 Dec; 22(6):1104-13. PubMed ID: 5167618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fate of metabolic hydrogen in the rumen.
    Czerkawski JW
    Proc Nutr Soc; 1972 Sep; 31(2):141-6. PubMed ID: 4563287
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.