These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 5549099)

  • 1. An analysis of unstirred layers in series with "tight" and "porous" lipid bilayer membranes.
    Andreoli TE; Troutman SL
    J Gen Physiol; 1971 Apr; 57(4):464-78. PubMed ID: 5549099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of solute and solvent flows in porous lipid bilayer membranes.
    Andreoli TE; Schafer JA; Troutman SL
    J Gen Physiol; 1971 Apr; 57(4):479-93. PubMed ID: 5549100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.
    Andreoli TE; Dennis VW; Weigl AM
    J Gen Physiol; 1969 Feb; 53(2):133-56. PubMed ID: 5764743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.
    Holz R; Finkelstein A
    J Gen Physiol; 1970 Jul; 56(1):125-45. PubMed ID: 5514158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride transport in porous lipid bilayer membranes.
    Andreoli TE; Watkins ML
    J Gen Physiol; 1973 Jun; 61(6):809-30. PubMed ID: 4708408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes.
    Dennis VW; Stead NW; Andreoli TE
    J Gen Physiol; 1970 Mar; 55(3):375-400. PubMed ID: 4938534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure and function of amphotericin B-cholesterol pores in lipid bilayer membranes.
    Andreoli TE
    Ann N Y Acad Sci; 1974 May; 235(0):448-68. PubMed ID: 4528067
    [No Abstract]   [Full Text] [Related]  

  • 8. Water permeability of thin lipid membranes.
    Cass A; Finkelstein A
    J Gen Physiol; 1967 Jul; 50(6):1765-84. PubMed ID: 6034767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the large error introduced in the estimate of the density of membrane pores from permeability measurements when diffusion in "unstirred layer" within the cells is disregarded.
    Ling GN
    Physiol Chem Phys Med NMR; 1987; 19(3):199-207. PubMed ID: 3441521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmosis in cortical collecting tubules. ADH-independent osmotic flow rectification.
    Schafer JA; Troutman SL; Andreoli TE
    J Gen Physiol; 1974 Aug; 64(2):228-40. PubMed ID: 4846768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extra- and intracellular unstirred layer effects in measurements of CO2 diffusion across membranes--a novel approach applied to the mass spectrometric 18O technique for red blood cells.
    Endeward V; Gros G
    J Physiol; 2009 Mar; 587(Pt 6):1153-67. PubMed ID: 19139045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules.
    Schafer JA; Andreoli TE
    J Clin Invest; 1972 May; 51(5):1264-78. PubMed ID: 5057131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of water in red cell and synthetic membranes.
    Solomon AK
    Rev Roum Physiol; 1974; 11(2):89-109. PubMed ID: 4847913
    [No Abstract]   [Full Text] [Related]  

  • 14. Permeability characteristics of the guinea pig biliary apparatus.
    Tavoloni N; Wyssbrod HR; Jones MJ
    Hepatology; 1986; 6(6):1369-81. PubMed ID: 2431992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability and electrical properties of thin lipid membranes.
    Finkelstein A; Cass A
    J Gen Physiol; 1968 Jul; 52(1):145Suppl+. PubMed ID: 5742829
    [No Abstract]   [Full Text] [Related]  

  • 16. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers.
    Gutknecht J; Bisson MA; Tosteson FC
    J Gen Physiol; 1977 Jun; 69(6):779-94. PubMed ID: 408462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of intracellular unstirred layer on apparent reflection coefficient for urea in inner medullary collecting duct: a computer simulation.
    Hamada Y; Imai M
    Exp Nephrol; 1995; 3(3):202-10. PubMed ID: 7620857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on nonelectrolyte permeation across the toad urinary bladder.
    Bindslev N; Wright EM
    J Membr Biol; 1976 Nov; 29(3):265-88. PubMed ID: 825648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of weak acids across lipid bilayer membranes: effects of chemical reactions in the unstirred layers.
    Gutknecht J; Tosteson DC
    Science; 1973 Dec; 182(4118):1258-61. PubMed ID: 4752218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.