These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 5550486)

  • 1. Theoretical and experimental basis for a specific countertransport system in membranes.
    Cussler EL; Evans DF; Matesich MA
    Science; 1971 Apr; 172(3981):377-9. PubMed ID: 5550486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monensin-mediated transports of H+, Na+, K+ and Li+ ions across vesicular membranes: T-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1992 Apr; 1106(1):171-7. PubMed ID: 1581330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of Na+ by monensin across bimolecular lipid membranes.
    Sandeaux R; Sandeaux J; Gavach C; Brun B
    Biochim Biophys Acta; 1982 Jan; 684(1):127-32. PubMed ID: 7055549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy.
    Vareille G; Marion P; Kraus JL; Castaing M
    Biochim Biophys Acta; 1993 Feb; 1146(1):25-37. PubMed ID: 8443224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of pyrophosphate linkage in the active transport of sodium ions.
    Wang JH
    Proc Natl Acad Sci U S A; 1970 Sep; 67(1):59-61. PubMed ID: 4318789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The theory of transport phenomena in biological membranes. II. The active transport of ions.
    Volkenstein MV; Fishman SN
    Biochim Biophys Acta; 1970 Mar; 203(1):10-6. PubMed ID: 5445669
    [No Abstract]   [Full Text] [Related]  

  • 8. Polarity of proximal tubular epithelial cells in relation to transepithelial transport.
    Murer H; Evers J; Kinne R
    Curr Probl Clin Biochem; 1976; 6():173-89. PubMed ID: 11964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Na/H exchange mechanism in apical membrane vesicles of the retinal pigment epithelium.
    Zadunaisky JA; Kinne-Saffran E; Kinne R
    Invest Ophthalmol Vis Sci; 1989 Nov; 30(11):2332-40. PubMed ID: 2553638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of pH on the conductance of lipid bimolecular membranes in relation to the alkaline ion transport induced by carboxylic carriers grisorixin, alborixin and monensin.
    Sandeaux R; Seta P; Jeminet G; Alleaume M; Gavach C
    Biochim Biophys Acta; 1978 Aug; 511(3):499-508. PubMed ID: 28761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-H+ exchange is present in sarcolemmal vesicles from dog superior mesenteric artery.
    Kahn AM; Shelat H; Allen JC
    Am J Physiol; 1986 Feb; 250(2 Pt 2):H313-9. PubMed ID: 3004233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrogenesis in a model of "boundary transport" in the sodium pump].
    Ambartsumian TG; Martirosov SM
    Biofizika; 1976; 21(1):85-8. PubMed ID: 1252540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange.
    Bichara M; Paillard M; Leviel F; Gardin JP
    Am J Physiol; 1980 Jun; 238(6):F445-51. PubMed ID: 7386625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanistical model for the uptake of sulfonamides by bacteria.
    Zarfl C; Matthies M; Klasmeier J
    Chemosphere; 2008 Jan; 70(5):753-60. PubMed ID: 17765286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for biological oscillations.
    Chay TR
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2204-7. PubMed ID: 6264468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of antibiotics on ion transport and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Thore A; Keister DL; Shavit N; San Pietro A
    Biochemistry; 1968 Oct; 7(10):3499-507. PubMed ID: 5681459
    [No Abstract]   [Full Text] [Related]  

  • 17. Lactate-sodium cotransport in rat renal brush border membranes.
    Barac-Nieto M; Murer H; Kinne R
    Am J Physiol; 1980 Nov; 239(5):F496-506. PubMed ID: 6159793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings: Simple teaching and research methods for measuring the properties of membranes.
    Gibson AT; Grinwald PM; North PM; Segal MB
    J Physiol; 1974 May; 239(1):13P. PubMed ID: 4853851
    [No Abstract]   [Full Text] [Related]  

  • 19. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of 5-methyltetrahydrofolate in basolateral membrane vesicles of rat liver.
    Horne DW; Reed KA; Said HM
    Am J Physiol; 1992 Jan; 262(1 Pt 1):G150-8. PubMed ID: 1733262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.