These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 5550489)

  • 1. Striated muscle fibers: facilitation of contraction at short lengths by caffeine.
    Rüdel R; Taylor SR
    Science; 1971 Apr; 172(3981):387-9. PubMed ID: 5550489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striated muscle fibers: inactivation of contraction induced by shortening.
    Taylor SR; Rüdel R
    Science; 1970 Feb; 167(3919):882-4. PubMed ID: 5410851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vertebrate striated muscle: length dependence of calcium release during contraction.
    Taylor SR
    Eur J Cardiol; 1976 May; 4 Suppl():31-8. PubMed ID: 1278216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of excitation-contraction coupling in frog tonic muscle fibers of Rana temporaria.
    Nasledov GA; Mandelstam JE; Radzjukewich TL
    Experientia; 1972 Nov; 28(11):1305-6. PubMed ID: 4539185
    [No Abstract]   [Full Text] [Related]  

  • 5. Caffeine- and potassium-induced contractures of frog striated muscle fibers in hypertonic solutions.
    Caputo C
    J Gen Physiol; 1966 Sep; 50(1):129-39. PubMed ID: 5971024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-force relation of calcium activated muscle fibers.
    Schoenberg M; Podolsky RJ
    Science; 1972 Apr; 176(4030):52-4. PubMed ID: 5061575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine contracture of frog skeletal muscle and of single muscle fibers.
    Gebert G
    Am J Physiol; 1968 Aug; 215(2):296-8. PubMed ID: 5665159
    [No Abstract]   [Full Text] [Related]  

  • 8. The localization of calcium in skeletal muscle: its distribution in muscles in which the caffeine-induced contracture was arrested.
    McCallister LP; Hadek R
    J Ultrastruct Res; 1973 Oct; 45(1):59-81. PubMed ID: 4201504
    [No Abstract]   [Full Text] [Related]  

  • 9. Sarcomere length dependence of the force-velocity relation in single frog muscle fibers.
    Granzier HL; Burns DH; Pollack GH
    Biophys J; 1989 Mar; 55(3):499-507. PubMed ID: 2784695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of caffeine in excitation-contraction coupling of frog skeletal muscle fibres.
    Kumbaraci NM; Nastuk WL
    J Physiol; 1982 Apr; 325():195-211. PubMed ID: 6980982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of manganese ions on excitation-contraction coupling in frog sartorius muscle.
    Oota I; Takauji M; Nagai T
    Jpn J Physiol; 1972 Aug; 22(4):379-92. PubMed ID: 4539682
    [No Abstract]   [Full Text] [Related]  

  • 12. Penetration of horseradish peroxidase into the terminal cisternae of frog skeletal muscle fibers and blockade of caffeine contracture by Ca ++ depletion.
    Rubio R; Sperelakis N
    Z Zellforsch Mikrosk Anat; 1972; 124(1):57-71. PubMed ID: 4536808
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of caffeine on the initiation of contraction in isolated muscle fibres of the frog.
    Ludin HP; Lüttgau HC; Oetliker H
    J Physiol; 1966 Oct; 186(2):101P-102P. PubMed ID: 5972095
    [No Abstract]   [Full Text] [Related]  

  • 14. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.
    Edman KA
    J Physiol; 1979 Jun; 291():143-59. PubMed ID: 314510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.
    Edman KA
    Acta Physiol Scand; 1980 May; 109(1):15-26. PubMed ID: 6969530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of skeletal muscle myofibrils.
    Friedman AL; Goldman YE
    Biophys J; 1996 Nov; 71(5):2774-85. PubMed ID: 8913614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Excitation-contraction coupling in the skeletal muscle].
    Natori R
    Nihon Heikatsukin Gakkai Zasshi; 1969 Sep; 5(3):127-34. PubMed ID: 4948380
    [No Abstract]   [Full Text] [Related]  

  • 18. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum.
    Weber A; Herz R
    J Gen Physiol; 1968 Nov; 52(5):750-9. PubMed ID: 5688082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic properties of fixed and fresh muscle.
    Galey FR
    J Ultrastruct Res; 1969 Mar; 26(5):424-41. PubMed ID: 5776314
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of transverse tubule-disruption on 14C-caffeine influx in frog skeletal muscle.
    Nagai I; Obara K; Oota I; Nagai T
    Jpn J Physiol; 1979; 29(3):275-81. PubMed ID: 502087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.